高三物理知识点归纳大全精选
相关文章
物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。下面小编为大家带来2022物理高三知识点总结人教版,希望大家喜欢!
高三物理知识点归纳大全精选 1
1.电路的组成:电源、开关、用电器、导线。
2.电路的三种状态:通路、断路、短路。
3.电流有分支的是并联,电流只有一条通路的是串联。
4.在家庭电路中,用电器都是并联的。
5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。
6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。
7.电压是形成电流的原因。
8.安全电压应低于24V。
9.金属导体的电阻随温度的升高而增大。
10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。
11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。
12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。
13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI
14.串联电路中:电压、电功和电功率与电阻成正比
15.并联电路中:电流、电功和电功率与电阻成反比
16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。
高三物理知识点归纳大全精选 2
(1)极性分子之间
极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。
(2)极性分子与非极性分子之间
非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。
(3)非极性分子之间
非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?
我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。
从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。
高三物理知识点归纳大全精选 3
分子动理论是在坚实的实验基础上建立起来的。我们通过单分子油膜实验、隧道扫描显微镜观察碳原子的分布等实验,知道物质是由很小的分子组成的,分子大小在10-10m数量级。我们又通过扩散现象和布朗运动等实验知道了分子是永不停息地做无规则运动的。分子动理论还告诉我们分子之间有相互作用力。
(1)演示实验:
①长玻璃管内,分别注入水和酒精,混合后总体积减小。
②U形管两臂内盛有一定量的水(不注满水),将右管上端用橡皮塞堵住,左管继续注入水,右管水面上的空气被压缩。
上述实验可以说明气体、液体的内部分子之间是有空隙的。钢铁这样坚固的固体的分子之间也有空隙,有人用两万标准大气压的压强压缩钢筒内的油,发现油可以透过筒壁溢出。
布朗运动和扩散现象不但说明分子不停地做无规则运动,同时也说明分子间有空隙,否则分子便不能运动了。
(2)一方面分子间有空隙,另一方面,固体、液体内大量分子却能聚集在一起形成固定的形状或固定的体积,这两方面的事实,使我们推理得出分子之间一定存在着相互吸引力。
分子之间还存在着斥力
固体和液体很难被压缩,即使气体压缩到了一定程度后再压缩也是很困难的;用力压缩固体(或液体、气体)时,物体内会产生反抗压缩的弹力。这些事实都是分子之间存在斥力的表现。
运用反证法推理,如果分子之间只存在着引力,分子之间又存在着空隙,那么物体内部分子都吸引到一起,造成所有物体都是很紧密的物质。但事实并不是这样的,说明必然还有斥力存在着。
高三物理知识点归纳大全精选 4
1、功(A级)
(2)公式:W=Fscosα,其中α为F与位移s的夹角,F是力的大小,s是位移大小。
(3)单位:焦耳(J),1J=1N·m
(4)功是标量:没有方向,但有正负。正负表示是动力做功、还是阻力做功,正功并不大于负功。
(ⅰ)当0<α<900时,W>0,力对物体做正功;
(ⅱ)当α=900时,W=0,力对物体不做功;
(ⅲ)当900<α<1800时,W<0,力对物体做负功或说成物体克服这个力做功。
(5)总功的计算
(ⅱ)先分别求出各个外力做的功,再把各个外力的功代数相加。
2、功率(A级)
(1)定义:功与完成这些功所用时间的比值。
(2)公式:定义式 P=W/t ,一般用于计算平均功率。
计算式 P=F·v cosα,一般用于计算瞬时功率,其中F是力的大小,v是瞬时速度,α是F与v的夹角。对于F和v在同一直线上,可直接用P=F·v来计算。
3、动能(A级)
(1)定义:物体由于运动而具有的能叫动能。
(2)公式:Ek=1/2 mv2,是标量,动能只与速度的大小有关,而与方向无关。
4、动能定理(A级)
(2)公式:W合=1/2 mv22-1/2 mv12
5、重力势能(A级)
(1)定义:地球上的物体具有的跟它的高度有关的能,它是物体和地球的系统所共有的。
(2)表达式:Ep=mgh,重力势能具有相对性,物体在某位置具有的势能和零势能面的选择有关。物体在两位置间的势能差和零势能面的选择无关。
6、机械能守恒定律(B级)
(1)物体的动能和势能的总和称为物体的机械能。
(3)表达式:① Ek1+Ep1=Ek2+Ep2 (初末势能要选同一零势能参考面)
② △Ek=-△Ep
(4)条件:系统内只有重力(或弹力)做功,其它力不做功,或虽作功但做功的代数和为零。
7、能量守恒定律 能源(A级)
(1)能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,这就是能量守恒定律。
(2)能量转化和转移具有方向性。
高三物理知识点归纳大全精选 5
1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。
1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波
1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
爱因斯坦还提出了相对论中的一个重要结论——质能方程式。
公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)
关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。
物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);
19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;
激光——被誉为20世纪的“世纪之光”;
1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高分辨能力,质子显微镜的分辨本能更高。
高三物理知识点归纳大全精选_精选范文网




