高一数学必修一公式整理合集
相关文章
数学的公式是数学学习的核心,对数学公式的思考是学好数学的前提,对数学公式的熟练掌握是学好数学的基础。小编在这里整理了相关资料,希望能帮助到您。
高一数学必修一公式整理合集 1
1、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。――康托尔
2、一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。——马克思
3、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——柯西
4、学习数学要多做习题,边做边思索。先知其然,然后知其所以然。——苏步青
5、如果我继承可观的财产,我在数学上可能没有多少价值了。——拉格朗日
6、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——达尔文
7、非数学归纳法在数学的研究中,起着不可缺少的作用。——舒尔(I·Schur)
8、现代数学最主要的成就是真正揭示了数学的整个面貌及其实质存在。——Russell
9、我总是尽我的精力和才能来摆脱那种繁重而单调的计算。——纳皮尔
10、一个没有几分诗人才能的数学家决不会成为一个完全的数学家……——魏尔斯特拉斯
11、纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。——哈尔莫斯
12、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——伯克霍夫
13、数学——科学不可动摇的基石,促进人类事业进步的丰富源泉……——巴罗
14、在数学里,分辨何是重要,何事不重要,知所选择是很重要的。——广中平佑
15、一个没有几分诗人气的数学家永远成不了一个完全的数学家。——维尔斯特拉斯
16、无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特
17、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。——华罗庚
18、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海
19、以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者。——开普勒
20、数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的可靠保证,没有数学,它们无法达到这样的可靠程度。——爱因斯坦
高一数学必修一公式整理合集 2
半角公式
in(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
高一数学必修一公式整理合集 3
一、集合有关概念
1. 集合的含义(研究对象的全体)
2. 集合的中元素的三个特性:
(1) 元素的确定性,互异性,无序性
3.集合的表示:用一个大写字母表示,列举法,描述法,自然语言法,区间法,韦恩图法 (Venn图)
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 复数集C
4、集合的分类:
(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合
二、集合间的基本关系
包含,包含于AÍB,真包含,真包含于,等于=
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合其子集有2n个,真子集有2n-1个
三、集合的运算
并(全要),交(重合),补(剩余)
二、函数的有关概念
1.函数的概念:非空、数集、x的全体、y的唯一。x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域是B的子集.
定义域:1式子有意义的条件
(1)分母不等于零;
(2)偶次方根的被开方数大于等于零;
(3)对数式的真数大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)零次幂底数不为0
2生活实际
3抽象函数定义域的求法(由定义域求房间范围,再由房间范围求定义域)
2.值域 : 观察法,几何法,公式法,图像法,不等式法,导数法,
3. 函数图象知识归纳
画法
A、 描点法:
、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数(同增异减,定义域取交集)
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
1 任取x1,x2∈D,且x1
2 作差f(x1)-f(x2);
3 变形(通常是因式分解和配方);
4 定号(即判断差f(x1)-f(x2)的正负);
5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
1首先确定函数的定义域,并判断其是否关于原点对称;
2确定f(-x)与f(x)的关系;
3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
1 利用二次函数的性质(配方法)求函数的最大(小)值
2 利用图象求函数的最大(小)值
3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
高一数学必修一公式整理合集 4
in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
高一数学必修一公式整理合集 5
勒内·笛卡尔(René Descartes,1596年3月31日-1650年2月11日),1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡尔得名),1650年2月11日逝于瑞典斯德哥尔摩,法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人之一,是近代唯物论的开拓者,提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,并为欧洲的“理性主义”哲学奠定了基础。
笛卡尔最为世人熟知的是其作为数学家的成就。他于1637年发明了现代数学的基础工具之一——坐标系,将几何和代数相结合,创立了解析几何学。同时,他也推导出了笛卡尔定理等几何学公式。值得一提的是,传说著名的心形线方程也是由笛卡尔提出的。
在哲学上,笛卡尔是一个二元论者以及理性主义者。他是欧陆“理性主义”的先驱。关于笛卡尔的哲学思想,最著名的就是他那句“我思故我在 ”。他的《第一哲学沉思集》(又名《形而上学的沉思》)至今仍然是许多大学哲学系的必读书目之一。在物理学方面,笛卡尔将其坐标几何学应用到光学研究上,在《屈光学》中第一次对折射定律作出了理论上的推证。在他的《哲学原理》第二章中以第一和第二自然定律的形式首次比较完整地表述了惯性定律,并首次明确地提出了动量守恒定律。这些都为后来牛顿等人的研究奠定了一定的基础。
高一数学必修一公式整理合集_精选范文网




