首页 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学

高一数学知识点鲁教版参考总结

发布时间: 浏览量:0

相信很多的同学同学都是非常的关心高考数学有哪些必考的知识点的,下面小编给大家分享一些高中数学必修二知识点总结,希望对大家有所帮助。

高一数学知识点鲁教版参考总结 1

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半.

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和.

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

高一数学知识点鲁教版参考总结 2

幂函数的性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

解题方法:换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

高一数学知识点鲁教版参考总结 3

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高一数学知识点鲁教版参考总结 4

第一章

〖1.1〗集合

【1.1.1】集合的含义与表示

(1)集合的概念

集合中的元素具有确定性、互异性和无序性.

(2)常用数集及其记法N表示自然数集,N_或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.

(3)集合与元素间的关系

(4)集合的表示法

①自然语言法:用文字叙述的形式来描述集合.

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.

③描述法:{x|x具有的性质},其中x为集合的代表元素.

④图示法:用数轴或韦恩图来表示集合.

(5)集合的分类

①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.

【1.1.2】集合间的基本关系

(6)子集、真子集、集合相等

【1.1.3】集合的基本运算

(8)交集、并集、补集

【补充知识】含绝对值的不等式与一元二次不等式的解法

(1)含绝对值的不等式的解法

(2)一元二次不等式的解法

〖1.2〗函数及其表示

【1.2.1】函数的概念

(1)函数的概念

①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.

②函数的三要素:定义域、值域和对应法则.

③只有定义域相同,且对应法则也相同的两个函数才是同一函数.

(2)区间的概念及表示法

{{7}}$

(3)求函数的定义域时,一般遵循以下原则:

①f(x)是整式时,定义域是全体实数.

②f(x)是分式函数时,定义域是使分母不为零的一切实数.

③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

⑥零(负)指数幂的底数不能为零.

⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.

⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.

⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.

(4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.

④不等式法:利用基本不等式确定函数的值域或最值.

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.

⑧函数的单调性法.

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种.

解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.

(6)映射的概念

④不等式法:利用基本不等式确定函数的值域或最值.

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.

⑧函数的单调性法.

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种.

解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.

(6)映射的概念

${{9}}$

〖1.3〗函数的基本性质

【1.3.1】单调性与最大(小)值

(1)函数的单调性

①定义及判定方法

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.

{{13}}

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法

②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.

③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域;

②化解函数解析式;

③讨论函数的性质(奇偶性、单调性);

④画出函数的图象.

利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.

①平移变换

②伸缩变换

③对称变换

(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.

(3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.

第二章 基本初等函数(Ⅰ)

〖2.1〗指数函数

【2.1.1】指数与指数幂的运算

(1)根式的概念

{{19}}

{{21}}$

【2.1.2】指数函数及其性质

(4)指数函数

〖2.2〗对数函数

【2.2.1】对数与对数运算

(1)对数的定义

{{24}}

【2.2.2】对数函数及其性质

(5)对数函数

{{27}}

〖2.3〗幂函数

(1)幂函数的定义

一般地,函数y=xa叫做幂函数,其中x为自变量,a是常数.

(2)幂函数的图象

(3)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象

②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)

③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.

{{30}}$

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.

③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.

(3)二次函数图象的性质

{{33}}

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.

{{36}}

{{38}}

⑥k1<x1<k2≤p1<x2<p2 p="" 此结论可直接由⑤推出.

{{41}}

第三章 函数的应用

方程的根与函数的零点

高一数学知识点鲁教版参考总结 5

一、对照法

如何正确理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

二、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

三、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

四、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。 分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

高一数学知识点鲁教版参考总结_精选范文网

相信很多的同学同学都是非常的关心高考数学有哪些必考的知识点的,下面小编给大家分享一些高中数学必修二知识点总结,希望对大家有所帮助。高中数学必修二知识点11、柱、锥、台、球的结构特征(1)棱柱:几何特征
推荐度:
点击下载文档文档为doc格式