高一数学必考知识点分析参考合集
相关文章
在课堂、课外练习中培养良好的作业习惯也很有必要。在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。以下是小编给大家整理的高一数学必修书知识点归纳整理,希望能帮助到你!
高一数学必考知识点分析参考合集 1
向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.
零向量:长度为的向量.
单位向量:长度等于个单位的向量.
相等向量:长度相等且方向相同的向量
amp;向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。
设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
高一数学必考知识点分析参考合集 2
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.
⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.
⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.
⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.
高一数学必考知识点分析参考合集 3
1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线
K=-A/B,b=-C/B
A1/A2=B1/B2≠C1/C2←→两直线平行
A1/A2=B1/B2=C1/C2←→两直线重合
横截距a=-C/A
纵截距b=-C/B
2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线
表示斜率为k,且过(x0,y0)的直线
3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线
4:斜截式:y=kx+b适用于不垂直于x轴的直线
表示斜率为k且y轴截距为b的直线
5:两点式:适用于不垂直于x轴、y轴的直线
表示过(x1,y1)和(x2,y2)的直线
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)
6:交点式:f1(x,y)_m+f2(x,y)=0适用于任何直线
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线
7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线
表示过点(x0,y0)且与直线f(x,y)=0平行的直线
8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度
9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线
表示过点(x0,y0)且方向向量为(u,v)的直线
10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线
表示过点(x0,y0)且与向量(a,b)垂直的直线
11:点到直线距离
点P(x0,y0)到直线Ι:Ax+By+C=0的距离
d=|Ax0+By0+C|/√A2+B2
两平行线之间距离
若两平行直线的方程分别为:
Ax+By+C1=OAx+By+C2=0则
这两条平行直线间的距离d为:
d=丨C1-C2丨/√(A2+B2)
12:各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零.
13:位置关系
若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0
1.当A1B2-A2B1≠0时,相交
2.A1/A2=B1/B2≠C1/C2,平行
3.A1/A2=B1/B2=C1/C2,重合
4.A1A2+B1B2=0,垂直
高一数学必考知识点分析参考合集 4
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
高一数学必考知识点分析参考合集 5
圆的方程定义:
圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.
①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.
①dR,直线和圆相离.
2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.
3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足.
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线.
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
训,
高一数学必考知识点分析参考合集_精选范文网




