初三数学特殊的平行四边形图形的相似知识点经典大全
相关文章
知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三数学特殊的平行四边形图形的相似知识点经典大全 1
一、复习目标:
(1使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机整体,更利于学生理解;
(2精讲多练,巩固基础知识,掌握基本技能;
(3抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型的变化;
(4做好综合题训练,提高学生综合运用知识分析问题的能力。
二、复习方法与措施:
考虑到数学复习的时间和任务,笔者认为,中考的数学复习分三轮进行。太少,复习就没有层次性;太多,时间上不允许。
第一轮,摸清初中数学的知识脉络,开展基础知识系统复习。第一轮复习是总复习的基础,侧重点是双基训练。近几年的中考题安排了较大比例(约70%)的试题来考查 双基 。全卷的基础知识覆盖面较广,起点低,许多试题源于课本,有的是对课本原型进行加工、组合、延伸和拓展。在这个阶段,教师要引导学生扎扎实实地夯实基础。具体的做法是:
1.使学生按照新课程标准的要求去把握各个知识点,特别要记牢记准一些重要的公式、定理、公理等。要提醒学生注意公式、定理中的隐含条件。
2组织、引导、协助学生将一些相关的、相近的知识点进行整理和比较,掌握基础知识之间的联系,要做到理清知识结构,形成知识体系,并能综合运用。例如,在复习绝对值的性质时,可以将绝对值的非负性和平方、算术平方根的非负性联系起来。还要提醒学生注意:几个非负数的和如果为零,那么这几个数都必须同时为零。
3.通过例题和习题,使学生在做题中注意规范的解题格式和步骤,对基本的解题方法进行归纳和整理,做到举一反三,触类旁通。例如,在进行有理数的加、减、乘、除、乘方等基本运算时,要提醒学生每一种运算都要 先确定符号,再确定绝对值 。在求证线段或角相等的证明题时,常见的方法是证明三角形全等。
第二轮,针对综合性较强的难点和与社会生活相联系的热点,开展专题复习。
第二轮复习是总复习的提高阶段,侧重点是思考方法和思维能力、综合能力的训练。随着课程改革的深入,实践探索题、动态分析题等开放性题目越来越多,总复习时我们就应该引导学生加强这些方面的探讨和学习,掌握解决这类题型的方法和技巧。具体的做法是:
1.针对中考的特点,可以从以下几个方面收集一些资料,进行专项训练:①实际应用型问题;②突出科技发展、信息资源转化的图表信息题;③体现自学能力考查的阅读理解题;④考查学生应变能力的图形变化题、开放性试题;⑤考查学生思维能力、创新意识的归纳猜想、操作探究性试题;⑥几何代数综合型试题等。
2.引导和协助学生总结上述问题的解题技法。例如,在解答实际应用型问题时,可引导学生从复杂的实际问题中抽象出简单的数学模型,并学会运用表格或者图形分析问题中的数量关系。在解答归纳猜想、总结规律的问题时,可引导学生先找出问题中的 变 与 不变 ,再找 变 量之间的关系,掌握 从特殊到一般 的思维方法。
3.培养学生良好的解题习惯。在进行专题训练时,要求学生思维要严密,必要时要分类讨论;解题过程要有逻辑性,每一步都必须有理有据,千万不能想当然;解题结束时要进行简单的检验,要注意解题结果是否符合题义或者实际意义等。
初三数学特殊的平行四边形图形的相似知识点经典大全 2
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学特殊的平行四边形图形的相似知识点经典大全 3
半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初三数学特殊的平行四边形图形的相似知识点经典大全 4
代数式
1、代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2、整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3、单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:
①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
4、同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律。
5、根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
6、同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
初三数学特殊的平行四边形图形的相似知识点经典大全 5
一、圆的定义
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质
1、圆的对称性
(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
(2)切线长定理。
∵PA、PB切⊙O于点A、B
∴PA=PB,∠1=∠2。
13、内切圆及有关计算。
(1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求内切圆的半径r。
分析:先证得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
-r+a-r=c
14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
C切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。
(3)切割线定理。
如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB?PC。
(4)推论:如图,PAB、PCD是⊙O的割线,则PA?PB=PC?PD。
15、圆与圆的位置关系。
(1)外离:d>r1+r2,交点有0个;
外切:d=r1+r2,交点有1个;
相交:r1-r2
内切:d=r1-r2,交点有1个;
内含:0≤d
(2)性质。
相交两圆的连心线垂直平分公共弦。
相切两圆的连心线必经过切点。
16、圆中有关量的计算。
(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。
(2)扇形的面积用S表示。
(3)圆锥的侧面展开图是扇形。
r为底面圆的半径,a为母线长。
初三数学特殊的平行四边形图形的相似知识点经典大全_精选范文网




