首页 > 学习方法 > 初中学习方法 > 初一学习方法 > 七年级数学

初一部编版数学知识点范文集锦

发布时间: 浏览量:2

学习效率的高低,是一个学生综合学习能力的体现。在学生时代,学习效率的高低主要对学习成绩产生影响。当一个人进入社会之后,还要在工作中不断学习新的知识和技能,这时候,一个人学习效率的高低则会影响他(或她)的工作成绩,继而影响他的事业和前途。下面是小编为您整理的《七年级数学下册知识总结》,仅供大家参考。

初一部编版数学知识点范文集锦 1

一、同底数幂的乘法

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

二、幂的乘方与积的乘方

三、同底数幂的除法

(1)运用法则的前提是底数相同,只有底数相同,才能用此法则

(2)底数可以是具体的数,也可以是单项式或多项式

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

四、整式的乘法

1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

五、平方差公式

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

公式运用

可用于某些分母含有根号的分式:

1/(3-4倍根号2)化简:

六、完全平方公式

完全平方公式中常见错误有:

①漏下了一次项

②混淆公式

③运算结果中符号错误

④变式应用难于掌握。

七、整式的除法

1、单项式的除法法则

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。

初一部编版数学知识点范文集锦 2

  1.数轴

  (1)数轴的概念:

  规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:

  原点,单位长度,正方向。

  (2)数轴上的点:

  所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。

  (一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

  (3)用数轴比较大小:

  一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  2.相反数

  (1)相反数的概念:

  只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:

  掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:

  与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:

  求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  3.绝对值

  1.概念:

  数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  4.有理数大小比较

  1.有理数的大小比较:

  比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);

  也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

  2.有理数大小比较的法则:

  ①正数都大于0;

  ②负数都小于0;

  ③正数大于一切负数;

  ④两个负数,绝对值大的其值反而小。

  规律方法·有理数大小比较的三种方法:

  (1)法则比较:

  正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  (2)数轴比较:

  在数轴上右边的点表示的数大于左边的点表示的数.

  (3)作差比较:

  若a﹣b>0,则a>b;

  若a﹣b<0,则a

  若a﹣b=0,则a=b.

  5.有理数的减法

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。 即:a﹣b=a+(﹣b)

  方法指引:

  ①在进行减法运算时,首先弄清减数的符号;

  ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

  注意:

  在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

  减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

  6.有理数的乘法

  (1)有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  (2)任何数同零相乘,都得0。

  (3)多个有理数相乘的法则:

  ①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

  ②几个数相乘,有一个因数为0,积就为0。

  (4)方法指引

  ①运用乘法法则,先确定符号,再把绝对值相乘.

  ②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

  7.有理数的混合运算

  1.有理数混合运算顺序:

  先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

  2.进行有理数的混合运算时:

  注意各个运算律的运用,使运算过程得到简化。

  有理数混合运算的四种运算技巧:

  (1)转化法:

  一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.

  (2)凑整法:

  在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.

  (3)分拆法:

  先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

  (4)巧用运算律:

  在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

  8.科学记数法—表示较大的数

  1.科学记数法:

  把一个大于10的数记成ax10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。

  (科学记数法形式:ax10n,其中1≤a<10,n为正整数)

  2.规律方法总结:

  ①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

  ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

  9.代数式求值

  (1)代数式的值:

  用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

  (2)代数式的求值:

  求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。

  题型简单总结以下三种:

  ①已知条件不化简,所给代数式化简;

  ②已知条件化简,所给代数式不化简;

  ③已知条件和所给代数式都要化简.

  10.规律型:图形的变化类

  首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。

  探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

  11.等式的性质

  1.等式的性质

  性质1: 等式两边加同一个数(或式子)结果仍得等式;

  性质2 : 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

  2.利用等式的性质解方程

  利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.

  应用时要注意把握两关:

  ①怎样变形;

  ②依据哪一条,变形时只有做到步步有据,才能保证是正确的.

  12.一元一次方程的解

  定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

  把方程的解代入原方程,等式左右两边相等。

  13.解一元一次方程

  1.解一元一次方程的一般步骤:

  去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

  2.解一元一次方程时先观察方程的形式和特点:

  若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

  3.在解类似于“ax+bx=c”的方程时:

  将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

  使方程逐渐转化为ax=b的最简形式体现化归思想。

  将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

  14.一元一次方程的应用

  1.一元一次方程解应用题的类型

  (1)探索规律型问题;

  (2)数字问题;

  (3)销售问题(利润=售价﹣进价,利润率=利润进价x100%);

  (4)工程问题(①工作量=人均效率x人数x时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

  (5)行程问题(路程=速度x时间);

  (6)等值变换问题;

  (7)和,差,倍,分问题;

  (8)分配问题;

  (9)比赛积分问题;

  (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

  2.利用方程解决实际问题的基本思路

  首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

  列一元一次方程解应用题的五个步骤

  (1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

  (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

  (3)列:根据等量关系列出方程.

  (4)解:解方程,求得未知数的值.

  (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

  15.正方体相对两个面上的文字

  (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

  (2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

  (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

  16.直线、射线、线段

  (1)直线、射线、线段的表示方法

  ①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

  ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

  ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

  (2)点与直线的位置关系:

  ①点经过直线,说明点在直线上;

  ②点不经过直线,说明点在直线外。

  17.两点间的距离

  (1)两点间的距离:

  连接两点间的线段的长度叫两点间的距离。

  (2)平面上任意两点间都有一定距离:

  它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

  18.角的概念

  (1)角的定义:

  有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。

  (2)角的表示方法:

  角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.

  角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。

  (3)平角、周角:

  角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。

  (4)角的度量:

  度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

  19.角平分线的定义

  从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。

  ①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。

  ②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。

  20.度分秒的运算

  (1)度、分、秒的加减运算

  在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。

  (2)度、分、秒的乘除运算

  ①乘法:度、分、秒分别相乘,结果逢60要进位。

  ②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。

  21.由三视图判断几何体

  (1)由三视图想象几何体的形状:

  首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。

  (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

  ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

  ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

  ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

  ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。

初一部编版数学知识点范文集锦 3

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

五、余角和补角

1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线

1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

七、平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5、平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

初一部编版数学知识点范文集锦 4

  等式的性质

  性质1 等式两边加同一个数(或式子)结果仍得等式;

  性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

  利用等式的性质解方程

  利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化。

  应用时要注意把握两关:

  ①怎样变形;

  ②依据哪一条,变形时只有做到步步有据,才能保证是正确的。

初一部编版数学知识点范文集锦 5

  直线、射线、线段的表示方法

  ①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

  ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

  ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

  点与直线的位置关系:

  ①点经过直线,说明点在直线上;

  ②点不经过直线,说明点在直线外。

TAG标签: 数学 知识点

初一部编版数学知识点范文集锦_精选范文网

学习效率的高低,是一个学生综合学习能力的体现。在学生时代,学习效率的高低主要对学习成绩产生影响。当一个人进入社会之后,还要在工作中不断学习新的知识和技能,这时候,一个人学习效率的高低则会影响他(或她)
推荐度:
点击下载文档文档为doc格式