七年级数学有理数的乘方教案设计精选总结
相关文章
正数与负数这节课是有理数这一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾前两个学段学过的数,然后通过引言中温度、净胜球数、加工允许误差的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.接下来是小编为大家整理的七年级数学《正数和负数》教案设计范文,希望大家喜欢!
七年级数学有理数的乘方教案设计精选总结 1
一、教学目标
1.能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;
2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。
3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.
二、教学重难点?
有理数乘方的概念及意义,并正确进行有理数乘方的运算
有理数乘方的概念及意义,并正确进行有理数乘方的运算
三、教学策略
本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性
四、教学过程
教学进程 教学内容 学生活动 设计意图 引入新知 问题一:
把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.
问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折100次,算式中有几个2相乘?
显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.
问题二:
边长为a的正方形的面积为 ;
棱长为a的正方体的体积为 ;
学生动手操作,
观察纸片,发现规律
回忆小学已学知识并独立完成
目的是培养学生的观察及归纳能力
让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式
学习新知
2个a相加可记为:a+a=2a
3个a相加可记为:a+a+a=3a
4个a相加可记为:a+a+a+a=4a
个a相加可记为:a+a+a+……+a=na
类比可得:
2个a相乘可记为: EMBED Unknown
3个a相乘可记为: EMBED Unknown
4个a相乘可记为什么呢?
个a相乘又记为什么呢?
定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成 ,也就是 EMBED Unknown
其中 叫做 的n次方,也叫做 的n次幂. 叫做幂的底数 可以取任何有理数;n叫做幂的指数,可以取任何正整数.
特殊地, 可以看作 的一次幂,也就是说 的指数是1.
例如: 读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为x.
注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.
在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.
例1.填空:
(1) EMBED Unknown 的底数是_____,指数是_____, 它表示______;
(2) 的底数是______,指数是______, 它表示______;
(3) 的底数是______,指数是______, 它表示_______;
例2.计算:
教师引导
学生口答
学生边记录,边体会、理解
正确表达有理数的乘方
学生口答
分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程
体会类比的数学思想
七年级数学有理数的乘方教案设计精选总结 2
1.1正数和负数 教学设计(一)
一、教学目标
(一)知识与技能:
1.会判断一个数是正数还是负数
2.能用正、负数表示生活中具有相反意义的量
(二)过程与方法:
经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性
(三)情感态度价值观:
感知到数学知识来源于生活并为生活服务。
二、学法引导
1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。
2.学生学法:研究实际问题→认识负数→负数在实际中的应用。
三、重点、难点、疑点及解决办法
1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。
2.难点:负数的引入。
3.疑点:负数概念的建立。
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、自制活动胶片、中国地图。
六、教学设计思路
教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。
七、教学步骤
(一)创设情境,复习导入
师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?
学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……
师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?
学生活动:学生们思考,头脑中产生疑问。
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。
(二)探索新知,讲授新课
师:为了研究这个问题,我们看两个实例
(出示投影1)用复合胶片翻四次
在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)
学生活动:看图回答10℃,5℃,零下5℃,零下10℃。
[板书]
10 5 -5 -10 师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?
(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形)。
学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米。
【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位。
教师针对学生回答的情况给与指正。
师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、 ℃记作+5、+10、+1.6、 ,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数。
师随着叙述给出板书
[板书]
正数:大于0的数
负数:正数前面加“-”号(小于0的数)
0:既不是正数也不是负数。 【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是正数与负数,还清楚地知识,正数与负数是相对的。
(三)尝试反馈,巩固练习
1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?
2.出示1(投影显示)
例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“
-11,4.8,+7.3,0,-2.7, , , ,-8.12,
3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。
正数集合 负数集合
4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________。
(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?
学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答。
【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础。
师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?
学生活动:分组讨论,互相补充,两个学生回答。
教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习。
七年级数学有理数的乘方教案设计精选总结 3
一、教学目标:
1、认知目标
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标
(1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
二、教学重难点和关键:
1、教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
三、教学方法
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
四、教学过程:
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:假如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映图片)如何算24?
师:如果四张都是3呢?
生答: -3 - 3×3×(-3)=
师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗?
生:思考几分钟后,有同学会想出 的答案
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)
2、动手实践,共同探索乘方的定义
学生活动:请同学们拿出一张纸进行对折,再对折
问题:(1)对折一次有几层? 2
(2)对折二次有几层?
(3)对折三次有几层?
(4)对折四次有几层?
师:一直对折下去,你会发现什么?
生:每一次都是前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记: ……
师:请同学们总结 对折n次有几层?可以简记为什么?
2×2×2×2……×2
HAPE MERGEFORMAT
个2
生:可简记为:
师:猜想: 生:
师:怎样读呢? 生:读作 的 次方
老师总结:求 个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在 中, 叫做底数(相同
的因数), 叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
七年级数学有理数的乘方教案设计精选总结 4
教学目标:
1.认识用字母表示数.
2.会用含字母的式子表示数量关系.
教学重难点:会用字母表示数量关系.
教学过程:
一、创设问题情境,引入新课
1.阅读课本P53,本章引言中的问题:
问题1:用s表示路程,v表示速度,t表示行驶时间,这三个量之间存在什么样的关系式?
问题2:用S表示圆的面积,C表示圆的周长,r表示圆的半径,用含r的式子表示S和C.
问题3:a和b表示两个有理数,用字母表示加法交换律.
问题4:全班共有学生x人,其中女生人数占54%,女生人数和男生人数分别是多少?用含x的式子表示.
2.合作交流以上问题、思考:
(1)字母可以表示什么?
(2)用字母表示数的作用.
3.总结归纳:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.
4.课本P54例1、P55例2.
(1)学生独立完成.
(2)交流,有困难的学生组内讨论帮助.
二、反馈练习
1.课本P56练习第1~4题.
2.能力提升练习.
(1)一段水渠的横截面是梯形,上口宽a m,下底宽b m,渠深0.8 m,若这段水渠长为l m,修这条水渠需要挖土石方 .?
(2)一种袋装瓜子,其质量x(g)与售价c(元)之间有关数据如下表:
瓜子质量(x g) 售价c(元) 100 2.4+0.5 200 4.8+0.5 300 7.2+0.5 400 9.6+0.5 500 12+0.5 … …
用含字母x的式子表示售价c是 .?
第2课时 单项式
教学目标:
1.理解单项式及单项式系数、次数的概念.
2.会准确迅速地确定一个单项式的系数和次数.
教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.
教学难点:单项式概念的建立.
教学过程:
一、复习引入
1.列代数式
(1)若正方体的边长为a,则正方体的面积是 ;?
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;?
(3)若x表示正方体的棱长,则正方体的体积是 ;?
(4)若m表示一个有理数,则它的相反数是 .?
2.请学生说出所列代数式的意义.
3.请学生观察所列代数式包含哪些运算,有何共同运算特征.
二、讲授新课
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式.然后教师作补充:单独一个数或一个字母也是单项式,如a,5.
2.练习:判断下列各代数式中哪些是单项式?
(1) ; (2)abc; (3)b2; (4)-5ab2;
(5)y; (6)-xy2; (7)-5.
3.单项式的系数和次数:
直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式次数的概念并板书.
4.例题:
【例1】判断下列各代数式是否是单项式.如不是,请说明理由;如果是,请指出它的系数和次数.
(1)x+1; (2); (3)πr2; (4)-a2b.
【例2】下面各题的判断是否正确?
(1)-7xy2的系数是7;
(2)-x2y3与x3没有系数;
(3)-ab3c2的次数是0+3+2;
(4)-a3的系数是-1;
(5)-32x2y3的次数是7;
七年级数学有理数的乘方教案设计精选总结 5
1.1 正数和负数
教学目标
1.了解正数和负数的产生过程以及数学与实际生活的联系;
2.理解正数和负数的意义,会判断一个数是正数还是负数;(重点)
3.理解数0表示的量的意义;
4.能用正数、负数表示生活中具有相反意义的量.(难点)
教学过程
一、情境导入
今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.
这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗?
二、合作探究
探究点一:正、负数的认识
【类型一】 区分正数和负数
例1 下列各数哪些是正数?哪些是负数?
-1,2.5,+ eq f(4,3) ,0,-3.14,120,-1.732,- eq f(2,7) 中,正数是______________;负数是______________.
解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.
解:在-1,2.5,+ eq f(4,3) ,0,-3.14,120,-1.732,- eq f(2,7) 中,负数有:-1,-3.14,-1.732,- eq f(2,7) ,正数有:2.5,+ eq f(4,3) ,120,0既不是正数也不是负数.故答案为:2.5,+ eq f(4,3) ,120;-1,-3.14,-1.732,- eq f(2,7) .
方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.
【类型二】 对数“0”的理解
例2 下列对“0”的说法正确的个数是( )
①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.
A.3 B.4 C.5 D.0
解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.
方法总结:“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.
探究点二:具有相反意义的量
【类型一】 会用正、负数表示具有相反意义的量
七年级数学有理数的乘方教案设计精选总结_精选范文网




