初一数学的知识点范文参考
相关文章
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
初一数学的知识点范文参考 1
直线、射线、线段的表示方法
①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。
点与直线的位置关系:
①点经过直线,说明点在直线上;
②点不经过直线,说明点在直线外。
初一数学的知识点范文参考 2
一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是具体的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
初一数学的知识点范文参考 3
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
初一数学的知识点范文参考 4
1.相反意义的量
现实生活中,有一些意义相反的词,反映着一些不同的情境、状态或过程,如“高出与低于”“扩大与缩小”等,这些词与数字、单位结合在一起就构成了相反意义的量,如“涨0.1元”“调出80t”等,这个概念包含:
(1)意义相反,如向东与向西,收入与支出等.
(2)都是同类的数量,如“高出10米与支出300元”就不是相反意义的量.
2.正数和负数
(1)正数:如+1,+3/2号,+1.05等这些小学里学过的数(除0外)前加上“+”
号就是正数,此时的“+”不是表示加法运算,而是代表数的性质,如“+1”读作“正1”,正数前面的“+”可省略不写.
车上淋7
(2)负数:如-1,-7/3,-2.1等在正数前面加“-”号的数就是负数,“-”号
表示数的性质,读作“负”,负数前面的“-”号不能省略.
(3)关于“0”的意义.
0既不是正数,也不是负数,是正数与负数的“分界线”,同时,它不再是小学理解的表示“没有”的数,也不再是最小的数,结合生活实际,它具有自身的意义,如“00C”表示冰点时的温度等.
3.用正负数表示具有相反意义的量
正数是比0大的数,负数是比0小的数,正、负数可用来表示生活中这些具有相反意义的量.自然界中有许多具有相反意义的量,如上升5米与下降6米,向东l0km与向西8km,盈余10万元与亏损2万元等,都可以用正数与负数来表示它们.
解题方法指导
[例1]用正、负数表示下列具有相反意义的量.
(1)在知识竞赛中,如果用+10表示加10分,那么扣20分应怎样表示?
(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向旋转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标准重量0.02g记作+0.02g,那么-0.03g表示什么?
分析:(1)加分和扣分具有相反意义,+10表示加10分,则扣20分应用-20表示;
(2)逆时针转动转盘与顺时针转动转盘表示相反意义,逆时针转动为正,则顺时针转动为负;
(3)超出标准质量的相反意义的量是低于标准质量,超出标准质量0.02g表示为+0.02g,则-0.03g表示低于标准质量0.03g.
解:(1)扣20分记作-20;
(2)沿顺时针方向转12圈记作-12圈;
(3)-0.03g表示乒乓球低于标准质量0.03g.
说明:具有相反意义的两个量规定其中一个量用正数表示,另一个量就用负数表示,到底用正数还是用负数来表示其中的哪一个量,只是一种规定,但也常遵循人们的习惯,比如人们习惯用正数表示零上温度,用正数表示收入等.
[例2]某水文站记录一条河流的正常水位是28米,记录表上有6次记录分别为+2.1,0,-1.2,-3,-2,+1,这6次记录表示的实际水位分别是?
分析:在现实生活中,人们总是习惯把“高于”“上升”等记为正数,一般情况下,数学遵循这些生活“约定俗成”的规矩,所以,本题中的“+”号表示高于正常水位.
解:30.1米,28米,26.8米,25米,26米,29米。
说明:从本题的解答过程可以看出,数学与现实生活是密不可分的,脱离了生活去看数学,不仅会感到单调与枯燥,而且也会让数学成了“无源之水”.
【变式】课桌的高度比标准高度高出2mm,记作+2mm,那么比标准高度低3mm记作什么?现在有5张课桌,量得它们的尺寸分别为+lmm、-1mm、-1.5mm、0mm、+3mm.若规定课桌高度比标准高度最高不能超过2mm、最低不能少于2mm就算合格,问上述5张课桌中有几张合格?
分析:用正、负数表示相反意义的量,把比标准高度高记为正,则比标准高度低记为负;规定课桌的高度比标准高度最高不能超过2mm,最低不能少于2mm就算合格,也就是量得尺寸高、低在+2mm和-2mm之间算合格,故知+1mm、-lmm.0mm、-1.5mm均为合格.
解:比标准高度低3mm记作-3mm,以上5张课桌中有4张合格.
[例3]若向东走8m,记作+8m,一个人从A地出发先走+18m,再走-15m,又走+20m,最后走-12m,你能判断此人这时在何处吗?
分析:因为规定向东为正,所以走-15m、-12m,即为向西走15m和12m,那么这个人最后应在18-15+20-12=11(m)处,即在A的东边11m处.
解:18-15+20-12=11即+11.故这个人最后在A处以东llm处.
说明:(1)要正确理解“+”“-”号在实际问题中的意义,当我们规定出正数的意义后,“-”号就表示与“+”号意义相反的意思,如本题的“-”号即表示
“向西走”.
(2)本题可结合经验,用示意图帮助求解,就像直接观察温度计来获取温度变化情况一样.
初一数学的知识点范文参考 5
第一单元有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a〃1
(b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于
0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5有理数的乘方
1.5.1乘方?
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同极运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
初一数学的知识点范文参考_精选范文网




