首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二物理

高二物理学科的知识点精选整理

发布时间: 浏览量:1

总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,下面是小编给大家带来的高二年级物理知识点整理,以供大家参考!

高二物理学科的知识点精选整理 1

一、力:力是物体间的相互作用。

1、力的国际单位是牛顿,用N表示;

2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

3、力的示意图:用一个带箭头的线段表示力的方向;

4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

(1)重力:由于地球对物体的吸引而使物体受到的力;

(A)重力不是万有引力而是万有引力的一个分力;

(B)重力的方向总是竖直向下的(垂直于水平面向下)

(C)测量重力的仪器是弹簧秤;

(D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

(2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

(A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

(B)弹力包括:支持力、压力、推力、拉力等等;

(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

(D)在弹性限度内弹力跟形变量成正比;F=Kx

(3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

(A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

(B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

(D)静摩擦力的大小等于使物体发生相对运动趋势的外力;

(4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

(A)合力与分力的作用效果相同;

(B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

(C)合力大于或等于二分力之差,小于或等于二分力之和;

(D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

二、矢量:既有大小又有方向的物理量。

如:力、位移、速度、加速度、动量、冲量

标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量

三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

2、在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

3、处于平衡状态的物体在任意两个相互垂直方向的合力为零;

第2章直线运动

一、机械运动:一物体相对其它物体的位置变化,叫机械运动;

1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6、速度是表示质点运动快慢的物理量;

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7、加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

二、匀变速直线运动的规律:

1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3、推论:2as=vt2-v02

4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=aT2

5、初速度为零的匀加速直线运动:前1秒,前2秒,位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒的位移与时间的关系是:位移之比等于奇数比。

三、自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推论:2gh=vt2

高二物理学科的知识点精选整理 2

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍。

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

高二物理学科的知识点精选整理 3

动量与动能的比较:

①动量是矢量,动能是标量。

②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。

动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。

碰撞

两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。

以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。

以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失。

各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。

高二物理学科的知识点精选整理 4

定义:

电势差是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。

电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。

电流之所以能够在导线中流动,也是因为在电流中有着高电势和低电势之间的差别。这种差别叫电势差,也叫电压。换句话说。在电路中,任意两点之间的电位差称为这两点的电压。通常用字母V代表电压。

电源是给用电器两端提供电压的装置。

电压的大小可以用电压表(符号:V)测量。

串联电路电压规律:

串联电路两端总电压等于各部分电路两端电压和。

公式:∑U=U1+U2

并联电路电压规律:

并联电路各支路两端电压相等,且等于电源电压。

公式:∑U=U1=U2

欧姆定律:U=IR(I为电流,R是电阻)但是这个公式只适用于纯电阻电路。

串联电压之关系,总压等于分压和,U=U1+U2.

并联电压之特点,支压都等电源压,U=U1=U2

高二物理学科的知识点精选整理 5

交变电流(正弦式交变电流)

1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)

2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2;I1/I2=n2/n2;P入=P出

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

注:

(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。

普适式){U:电压(V),I:电流(A),t:通电时间(s)}

TAG标签: 物理 知识点

高二物理学科的知识点精选整理_精选范文网

总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,下面是小编给大家带来的高二年级物理知识点整理
推荐度:
点击下载文档文档为doc格式