首页 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学

高一数学必修必考知识点参考大全

发布时间: 浏览量:2

知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些高一数学的知识点,希望对大家有所帮助。

高一数学必修必考知识点参考大全 1

函数的值域与最值

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

高一数学必修必考知识点参考大全 2

空间直角坐标系定义:

过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。

1、右手直角坐标系

①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;

②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):

沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<>

③已知点的位置求坐标的方法:

过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则(a,b,c)就是点P的坐标。

2、在x轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c)。

在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c)。

3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c);

点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c);

点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c);

点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c);

点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c);

点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c);

点P(a,b,c)关于原点的对称点(-a,-b,-c)。

4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为

5、空间两点间的距离公式

已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特殊点A(x,y,z)到原点O的距离为

6、以C(x0,y0,z0)为球心,r为半径的球面方程为

特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2

高一数学必修必考知识点参考大全 3

数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

高一数学必修必考知识点参考大全 4

圆锥曲线性质:

一、圆锥曲线的定义

1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.

2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.

3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.

二、圆锥曲线的方程

1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

2.双曲线:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

3.抛物线:y2=±2px(p>0),x2=±2py(p>0)

三、圆锥曲线的性质

1.椭圆:+=1(a>b>0)

(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±

2.双曲线:-=1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x

3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-

高一数学必修必考知识点参考大全 5

定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

范围:

倾斜角的取值范围是0°≤α<180°。

理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

③倾斜角相同,未必表示同一条直线。

公式:

k=tanα

k>0时α∈(0°,90°)

k<0时α∈(90°,180°)

k=0时α=0°

当α=90°时k不存在

ax+by+c=0(a≠0)倾斜角为A,

则tanA=-a/b,

A=arctan(-a/b)

当a≠0时,

倾斜角为90度,即与X轴垂直

TAG标签: 数学 学习方法

高一数学必修必考知识点参考大全_精选范文网

知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些高一数学的知识点,希望对大家有所
推荐度:
点击下载文档文档为doc格式