初二数学北师大版知识点范文参考
相关文章
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的学习方法,数学作为最烧脑的科目之一,需要不断的练习。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
初二数学北师大版知识点范文参考 1
一、直角三角形
1、角平分线: 角平分线上的点到这个角的两边的距离相等
如图,∵AD是∠BAC的平分线(或∠1=∠2),
E⊥AC,PF⊥AB
∴PE=PF
2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点
的距离相等 。 如图,∵CD是线段AB的垂直平分线,
∴PA=PB
3、勾股定理及其逆定理
①勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即 。
求斜边,则 ;求直角边,则 或 。
②逆定理 如果三角形的三边长a、b、c有关系 ,那么这个三角形是直角三角形 。
分别计算“ ”和“ ”,相等就是 ,不相等就不是 。
4、直角三角形全等
方法:SAS、ASA、SSS、AAS、HL。
5、其它性质
①直角三角形斜边上的中线等于斜边上的一半
如图,在 ABC中,∵CD是斜边AB的中线,∴CD= 。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角
边等于斜边的一半
如图,在 ABC中,∵∠A=30°,∴BC= 。
③在直角三角形中,如果一条直角边等于斜边的一半,那么
这条直角边所对的角等于30°
如图,在 ABC中,∵BC= ,∴∠A=30°。
④三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
如图,在⊿ABC中,∵E是AB的中点,F是AC的中点,
∴EF是⊿ABC的中位线 ∴EF‖BC,
二、四边形
1、多边形内角和公式:n边形的内角和=(n-2)?180?
求n边形的方法:
2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数)
成中心对称的两个图形中,对应点得连线经过对称中心,且被对称中心平分
会画与某某图形成中心对称图形
会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形
3、特殊四边形的判定
①平行四边形:
方法1两组对边分别平行的四边形是平行四边形
如图,∵ AB‖CD,AD‖BC,∴四边形ABCD是平行四边形
方法2 两组对边分别相等的四边形是平行四边形
如图,∵ AB=CD,AD=BC,∴四边形ABCD是平行四边形
方法3两组对角分别相等的四边形是平行四边形
如图,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形
方法4一组对边平行相等的四边形是平行四边形
如图,∵ AB‖CD,AB=CD,∴四边形ABCD是平行四边形
或∵AD‖BC,AD=BC,∴四边形ABCD是平行四边形
方法5 对角线互相平分的四边形是平行四边形
如图,∵ OA=OC,OB=OD,∴四边形ABCD是平行四边形
②矩形:
方法1 有三个角是直角的四边形是矩形
方法2 对角线相等的平行四边形是矩形
③菱形:
方法1 四边都相等的四边形是菱形
方法2 对角线互相垂直的平行四边形是菱形
④正方形
方法1 有一个角是直角的菱形是正方形
方法2有一组邻边相等的矩形是正方形
4、面积公式
①S平行四边形=底×高 ②S矩形=长×宽 ③S正方形=边长×边长
④S菱形=底×高=? ?×(对角线的积),即:S=(a×b)÷2
初二数学北师大版知识点范文参考 2
全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法:对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.
位似图形上任意一对对应点到位似中心的距离之比等于位似比.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.
常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.
数据的收集与处理
(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(samplinginvestigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6)当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.(7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.
数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.
刻画平均水平用:平均数,众数,中位数.刻画离散程度用:极差,方差,标准差.
常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义
初二数学北师大版知识点范文参考 3
概率初步
23.1确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性
23.3时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件A的概率我们记作P(A);对于随机事件A,可知0
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n
6.列举法、树状图、列表
23.4概率计算举例
初二数学北师大版知识点范文参考 4
【直角三角形】
◆备考兵法
1.正确区分勾股定理与其逆定理,掌握常用的勾股数.
2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.
3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.
4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.
5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路.
【三角形的重心】
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
4重心到顶点的距离与重心到对边中点的距离之比为2:1。
5.重心是三角形内到三边距离之积的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
初二数学北师大版知识点范文参考 5
分组分解法
我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。
全等三角形的性质:全等三角形对应边相等、对应角相等。
全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等
角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的'边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
初二数学北师大版知识点范文参考_精选范文网




