首页 > 学习方法 > 初中学习方法 > 初二学习方法 > 八年级数学

初二数学知识点笔记经典大全

发布时间: 浏览量:1

知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。

初二数学知识点笔记经典大全 1

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

初二数学知识点笔记经典大全 2

【相似、全等三角形】

1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

5、判定定理3三边对应成比例,两三角形相似(SSS)

6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

8、性质定理2相似三角形周长的比等于相似比

9、性质定理3相似三角形面积的比等于相似比的平方

10、边角边公理有两边和它们的夹角对应相等的两个三角形全等

11、角边角公理有两角和它们的夹边对应相等的两个三角形全等

12、推论有两角和其中一角的对边对应相等的两个三角形全等

13、边边边公理有三边对应相等的两个三角形全等

14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

15、全等三角形的对应边、对应角相等

【等腰、直角三角形】

1、等腰三角形的性质定理等腰三角形的两个底角相等

2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

3、等腰三角形的顶角平分线、底边上的中线和高互相重合

4、推论3等边三角形的各角都相等,并且每一个角都等于60°

5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

6、推论1三个角都相等的三角形是等边三角形

7、推论2有一个角等于60°的等腰三角形是等边三角形

8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

9、直角三角形斜边上的中线等于斜边上的一半

初二数学知识点笔记经典大全 3

【零指数幂与负整指数幂】

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数

难点:理解和应用整数指数幂的性质。

一、复习练习:

1、;=;=,=,=。

2、不用计算器计算:÷(—2)2—2-1+

二、指数的范围扩大到了全体整数.

1、探索

现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科学记数法

1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.

3、探索:

10-1=0.1

10-2=

10-3=

10-4=

10-5=

归纳:10-n=

例如,上面例2(2)中的0.000021可以表示成2.1×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.

所以35纳米=35×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以这个纳米粒子的直径为3.5×10-8米.

5、练习

①用科学记数法表示:

(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.

②用科学记数法填空:

(1)1秒是1微秒的1000000倍,则1微秒=_________秒;

(2)1毫克=_________千克;

(3)1微米=_________米;(4)1纳米=_________微米;

(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.

初二数学知识点笔记经典大全 4

【第六章一次函数】

定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数y=kx的图象是经过原点(0,0)的一条直线。在一次函数y=kx+b中,

当k>0时,的值随值的增大而增大;当k<0时,的值随值的增大而减小。

【第七章二元一次方程组】

定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。

【第八章数据的代表】

定义:一般地,对于n个数X1,X2,?Xn,我们把1/n(X1+X2+?+Xn)叫做这个数的算术平均数,简称平均数,记为X。

为A的三项测试成绩的加权平均数。

一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。

初二数学知识点笔记经典大全 5

【解一元一次方程】

1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

10.列一元一次方程解应用题:

(1)读题分析法:…………多用于"和,差,倍,分问题"

仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:…………多用于"行程问题"

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

TAG标签: 数学 知识点

初二数学知识点笔记经典大全_精选范文网

知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些八年级数学的知识点,希望对大家有
推荐度:
点击下载文档文档为doc格式