首页 > 学习方法 > 初中学习方法 > 初三学习方法 > 九年级数学

初三数学圆知识点归纳最新经典大全

发布时间: 浏览量:2

学习时集中精力,养成良好学习习惯,是节省学习时间和提高学习效率的最为基本的方法。下面小编为大家带来初三数学圆知识点归纳,希望大家喜欢!

初三数学圆知识点归纳最新经典大全 1

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。

(3)几个非负数的和等于零则每个非负数都等于零。

注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

初三数学圆知识点归纳最新经典大全 2

一元二次方程

1、认识一元二次方程

只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0

(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、用配方法求解一元二次方程

①配方法<即将其变为(x+m)2=0的形式>

配方法解一元二次方程的基本步骤:

把方程化成一元二次方程的一般形式;

将二次项系数化成1;

把常数项移到方程的右边;

两边加上一次项系数的一半的平方;

把方程转化成的形式;

两边开方求其根。

3、用公式法求解一元二次方程

②公式法(注意在找abc时须先把方程化为一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

5、一元二次方程的根与系数的关系

①根与系数的关系:

当b2-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根;

当b2-4ac<0时,方程无实数根。

②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:

③一元二次方程的根与系数的关系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

已知方程的两根x1、x2,可以构造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、应用一元二次方程

在利用方程来解应用题时,主要分为两个步骤:

设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);

寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

初三数学圆知识点归纳最新经典大全 3

一、相似三角形(7个考点)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心

考核要求:知道重心的定义并初步应用。考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。

考核要求:掌握实数与向量相乘、向量的线性运算。

初三数学圆知识点归纳最新经典大全 4

初中数学知识点总结:圆与圆的位置关系

圆与圆的位置关系,我们做下面的知识点总结学习。

圆与圆的位置关系

1.两个圆有且只有一个公共点时,叫做这两个圆外切.

2.相交两圆的连心线垂直平分公共弦.

3.两个圆有两个公共点时,叫做这两个圆相交.

4.两个圆内切时,这两个圆的公切线只有一条.

5.相切两圆的连心线必过切点.

相信同学们对圆与圆的位置关系知识点已经很好的掌握了,后面我们进行更多知识点的学习。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系:

在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面;②两条数轴;③互相垂直;④原点重合。

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初三数学圆知识点归纳最新经典大全 5

1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则

①点在圆上<===>d=r;②点在圆内<===>dd>r.

二.圆的对称性:

1.与圆相关的概念:

④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角.

⑧弦心距:从圆心到弦的距离叫做弦心距.

2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

三.圆周角和圆心角的关系:

1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.

2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.

推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;

推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;

四.确定圆的条件:

1.理解确定一个圆必须的具备两个条件:

经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.

2.定理:不在同一直线上的三个点确定一个圆.

3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:

(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.

(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.

(3)三角形的外心的性质:三角形外心到三顶点的距离相等.

初三数学圆知识点归纳最新经典大全_精选范文网

学习时集中精力,养成良好学习习惯,是节省学习时间和提高学习效率的最为基本的方法。下面小编为大家带来初三数学圆知识点归纳,希望大家喜欢!初三数学圆知识点归纳1.点与圆的位置关系及其数量特征:如果圆的半径
推荐度:
点击下载文档文档为doc格式