初三数学知识点梳理经典整理
相关文章
各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
初三数学知识点梳理经典整理 1
一 圆的定理
1.1不共线的三点确定一个圆
经过一点可以作无数个圆
经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上
定理:过不共线的三个点,可以作且只可以作一个圆
推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心
三角形的三条高线的交点叫三角形的垂心
1.2垂径定理
圆是中心对称图形;圆心是它的对称中心
圆是周对称图形,任一条通过圆心的直线都是它的对称轴
定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧
推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧
推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧
推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧
1.3弧、弦和弦心距
定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等
二 圆与直线的位置关系
2.1圆与直线的位置关系
如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离
如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点
定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线
定理:圆的切线垂直经过切点的半径
推论1:经过圆心且垂直于切线的直线必经过切点
推论2:经过切点且垂直于切线的直线必经过圆心
如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点
直线和圆的位置关系只能由相离、相切和相交三种
2.2三角形的内切圆
如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆
定理:三角形的三个内角平分线交于一点,这点是三角形的内心
三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。以旁心为圆心可以作一个圆和一边及其他两边的延长线相切,所作的圆叫做三角形的旁切圆
2.3切线长定理
定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
2.4圆的外切四边形
定理: 圆的外切四边形的两组对边的和相等
定理:如果四边形两组对边的和相等,那么它必有内切圆
三 圆与圆的位置关系
3.1两圆的位置关系
在平面内,不重合的两圆。它们的位置关系,有以下五种情况:外离、外切、相交、内切、外切
经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距
定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上
(1)两圆外离d>R+r
(2)两圆外切d=R+r
(3)两圆相交R-rr)
(4)两圆内切d=R-r(R>r)
(5)两圆内含dr)
特殊情况,两圆是同心圆d=0
3.2两圆的公切线
定理:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等
初三数学知识点梳理经典整理 2
重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.
如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查.
初三数学知识点梳理经典整理 3
1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;
5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
初三数学知识点梳理经典整理 4
一、圆的定义
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质
1、圆的对称性
(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
(2)切线长定理。
∵PA、PB切⊙O于点A、B
∴PA=PB,∠1=∠2。
13、内切圆及有关计算。
(1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求内切圆的半径r。
分析:先证得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
-r+a-r=c
14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
C切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。
(3)切割线定理。
如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB?PC。
(4)推论:如图,PAB、PCD是⊙O的割线,则PA?PB=PC?PD。
15、圆与圆的位置关系。
(1)外离:d>r1+r2,交点有0个;
外切:d=r1+r2,交点有1个;
相交:r1-r2
内切:d=r1-r2,交点有1个;
内含:0≤d
(2)性质。
相交两圆的连心线垂直平分公共弦。
相切两圆的连心线必经过切点。
16、圆中有关量的计算。
(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。
(2)扇形的面积用S表示。
(3)圆锥的侧面展开图是扇形。
r为底面圆的半径,a为母线长。
初三数学知识点梳理经典整理 5
直线与圆的位置关系
①直线和圆无公共点,称相离。AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
旋转变换
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
初三数学知识点梳理经典整理_精选范文网




