首页 > 学习方法 > 初中学习方法 > 初三学习方法 > 九年级数学

九年级数学课本知识点总结集锦

发布时间: 浏览量:1

课堂临时报佛脚,不如课前预习好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

九年级数学课本知识点总结集锦 1

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分。

矩形的性质

①矩形具有平行四边形的一切性质;

②矩形的四个角都是直角;

③矩形的对角线相等.

正方形的判定与性质

1.判定方法:

(1)邻边相等的矩形;

(2)邻边垂直的菱形;

(3)对角线垂直的矩形;

(4)对角线相等的菱形;

2.性质:

(1)边:四边相等,对边平行;

(2)角:四个角都相等都是直角,邻角互补;

(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。

九年级数学课本知识点总结集锦 2

直线与圆的位置关系

①直线和圆无公共点,称相离。AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

旋转变换

1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.

2.性质:(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等.

3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.

九年级数学课本知识点总结集锦 3

1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。

2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。

3、多看一些例题,不能只看皮毛,不看内涵。

4、要把想和看结合起来,各难度层次的例题都照顾到。

5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。

九年级数学课本知识点总结集锦 4

一、?深刻理解概念。??

概念是初三数学的基石,学习概念(包括定义、定理、性质与判定)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。多看一些例题。??

细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:????

不能只看皮毛,不看内涵。??

我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。????要把想和看结合起来。??

我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。??

二、多做综合题。??

综合题,由于用到的知识点较多,颇受命题人青睐。??

做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。??

“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。如何对待考试??

学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。

九年级数学课本知识点总结集锦 5

二元一次方程组

1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方形式

(6)开方:左右同时开平方

(7)求解:整理即可得到原方程的根

TAG标签: 数学 知识点

九年级数学课本知识点总结集锦_精选范文网

课堂临时报佛脚,不如课前预习好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。初三数学上
推荐度:
点击下载文档文档为doc格式