七年级数学重要知识点大全精选
相关文章
学习的成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向。每一门科目都有自己的学习方法,数学其实和语文英语一样,也是要记、要背、要练的。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学重要知识点大全精选 1
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)
单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
七年级数学重要知识点大全精选 2
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
七年级数学重要知识点大全精选 3
第一章:丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体
①几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
②点动成线,线动成面,面动成体。
3、生活中的立体图形
生活中的立体图形(按名称分)
柱:
①圆柱
②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
锥:
①圆锥
②棱锥
球
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:
11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)
6、截一个正方体:
用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图:
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章:有理数及其运算
1、有理数的分类
①正有理数
有理数{ ②零
③负有理数
有理数{ ①整数
②分数
2、相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。
5、绝对值:
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;
若|a|=-a,则a≤0。
正数的绝对值是它本身;
负数的绝对值是它的相反数;
0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:
正数大于0,负数小于0,正数大于负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
7、有理数的运算:
①五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;
绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:
减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
②有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
③运算律(5种)
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
8、科学记数法
一般地,一个大于10的数可以表示成a×
10n的形式,其中1≤n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)
第三章:整式及其加减
1、代数式
用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:
①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数。
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。
2、整式:单项式和多项式统称为整式。
①单项式:
都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:
单独的一个数或一个字母也是单项式;
单独一个非零数的次数是0;
当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。
②多项式:
几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
③同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:
①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
4、合并同类项法则:
把同类项的系数相加,字母和字母的指数不变。
5、去括号法则
①根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。
②根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章基本平面图形
1、线段、射线、直线
名称
表示方法
端点
长度
直线
直线AB(或BA)
直线l
无端点
无法度量
射线
射线OM
1个
无法度量
线段
线段AB(或BA)
线段l
2个
可度量长度
2、直线的性质
①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
②过一点的直线有无数条。
③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
3、线段的性质
①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)
②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
③线段的大小关系和它们的长度的大小关系是一致的。
4、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
6、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
8、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、角的性质
①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
②角的大小可以度量,可以比较,角可以参与运算。
10、平角和周角:
一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、多边形:
由若干条不在同一条直线上的线段首尾顺次相连组成的'封闭平面图形叫做多边形。
连接不相邻两个顶点的线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。
12、圆:
平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;
由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
第五章一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
5、移项:
把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。
6、解一元一次方程的一般步骤:
①去分母
②去括号
③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)
④合并同类项
⑤将未知数的系数化为1
第六章数据的收集与整理
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。
其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
七年级数学重要知识点大全精选 4
概率
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;
3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
七年级数学重要知识点大全精选 5
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
七年级数学重要知识点大全精选_精选范文网




