首页 > 学习方法 > 高中学习方法 > 高一学习方法 > 高一数学

高一数学必会必备知识点归纳整理集锦

发布时间: 浏览量:2

学会发现问题,并重视质疑在学习中常看到成绩好的同学,总是有很多问题问老师。提出疑问不仅是发现真知的起点,而且是发明创造的开端。以下是小编给大家整理的高一数学的期中知识点整理归纳,希望大家能够喜欢!

高一数学必会必备知识点归纳整理集锦 1

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1.Com

非负整数集(即自然数集)记作:N

正整数集:N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合

高一数学必会必备知识点归纳整理集锦 2

(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

(2)算法的特点:

①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决。

高一数学必会必备知识点归纳整理集锦 3

1.一些基本概念:

(1)向量:既有大小,又有方向的量.

(2)数量:只有大小,没有方向的量.

(3)有向线段的三要素:起点、方向、长度.

(4)零向量:长度为0的向量.

(5)单位向量:长度等于1个单位的向量.

(6)平行向量(共线向量):方向相同或相反的非零向量.

※零向量与任一向量平行.

(7)相等向量:长度相等且方向相同的向量.

2.向量加法运算:

⑴三角形法则的特点:首尾相连.

⑵平行四边形法则的特点:共起点

高一数学必会必备知识点归纳整理集锦 4

圆的方程定义:

圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.

①dR,直线和圆相离.

2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足.

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线.

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

高一数学必修一必记的知识点归纳分析3

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

【同步练习题】

一、选择题:

1.下列函数中,y是x的一次函数的是()

A.y=2x2+1;B.y=x-1+1C.y=-2(x+1)D.y=2(x+1)2

2.下列关于函数的说法中,正确的是()

A.一次函数是正比例函数B.正比例函数是一次函数

C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数

3.若函数y=(3m-2)x2+(1-2m)x(m为常数)是正比例函数,则()

A.m=;B.m=;C.m>;D.m<

4.下列函数:①y=-8x;②y=;③y=8x;④y=8x+1;⑤y=.其中是一次函数的有()

xA.1个B.2个C.3个D.4个

5.若函数y=(m-3)xm?1+x+3是一次函数(x≠0),则m的值为()

A.3B.1C.2D.3或1

6.过点A(0,-2),且与直线y=5x平行的直线是()

A.y=5x+2B.y=5x-2C.y=-5x+2D.y=-5x-2

7.将直线y=3x-2平移后,得到直线y=3x+6,则原直线()

A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位

C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位

8.汽车由天津开往相距120km的北京,若它的平均速度是60km/h,则汽车距北京的路程s(km)与行驶时间t(h)之间的函数关系式是()

A.s=60t;B.s=120-60tC.s=(120-60)tD.s=120+60t

二、填空题:(每小题3分,共27分)

1.若y=(n-2)xn2?n?1是正比例函数,则n的值是________.

2.函数y=x+4中,若自变量x的取值范围是-3

4.长方形的长为3cm,宽为2cm,若长增加xcm,则它的面积S(cm2)与x(cm)之间的函数关系式是_____,它是______函数,它的图象是_______.

5.已知函数y=mxm?m?1?m2?1,当m=______时,它是正比例函数,这个正比例函数的关系式为_______;当m=________时,它是一次函数,这个一次函数的关系式为_______.

6.把函数y=2x的图象沿着y轴向下平移3个单位,得到的直线的解析式为_____.a13

7.两条直线l1:y?x?b,l2:y?x?中,当a________,b______时,L1∥L2.425

8.直线y=-3x+2和y=3x+2是否平行?_________.

9.一棵树现在高50cm,若每月长高2cm,x月后这棵树的高度为ycm,则y与x之间的函数关系式是________.

三、基础训练:(共10分)

求小球速度v(米/秒)与时间t(秒)之间的函数关系式:(1)小球由静止开始从斜坡上向下滚动,速度每秒增加2米;(2)小球以3米/秒的初速度向下滚动,速度每秒增加2米;

(3)小球以10米/秒的初速度从斜坡下向上滚动,若速度每秒减小2米,则2秒后速度变为多少?何时速度为零?

四、提高训练:(每小题9分,共27分)

1.m为何值时,函数y=(m+3)x2m?1+4x-5(x≠0)是一次函数?

2.已知一次函数y=(k-2)x+1-:(1)k为何值时,函数图象经过原点?(2)k为何值时,函数图象过点A(0,3)?(3)k为何值时,函数图象平行于直线y=2x?

3.甲每小时走3千米,走了1.5小时后,乙以每小时4.5千米的速度追甲,设乙行走的时间为t(时),写出甲、乙两人所走的路程s(千米)与时间t(时)之间的关系式,并在同一坐标系内画出函数的图象.

五、中考题与竞赛题:(共12分)

某机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?

(2)求加油前油箱余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;(3)中途加油多少升?

(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.

参考答案:

一、1.C2.B3.A4.C5.D6.B7.A8.B二、1.-12.1

5.-1y=-x2或-1y=2x+3或y=-x

36.y=2x-37.=2≠-8.不平行9.y=50+2x

5三、(1)v=2t(2)v=3+2t.(3)解:v=10-2t,

当t=2时,v=10-2t=6(米/秒),∴2秒后速度为6米/秒;当v=0时,10-2t=0,

∴t=5,∴5秒后速度为零.

四、1.解:当m+3=0,即m=-3时,y=4x-5是一次函数;当m+3≠0时,由2m+1=1,得m=0,∴当m=0时,y=7x-5是一次函数;

1由2m+1=0,得m=-.

215∴当m=-时,y=4x-是一次函数,

221综上所述,m=-3或0或-.

2k22.解:(1)∵原点(0,0)的坐标满足函数解析式,即1-=0,

4∴k=±2,又∵k-2≠0,∴k=-2

k2(2)把A(0,-3)代入解析式,得-3=1-,

4∴k=±4.

(3)∵该直线与y=2x平行,∴k-2=2,∴k=4.

3.解:S甲=3t+4.5(t>0),S乙=4.5t(t>0),五、提示:(1)t=5.

(2)Q=42-6t(0≤t≤5).(3)Q=24

(4)∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米),∵240>230,

∴油箱中的油够用.

高一数学必会必备知识点归纳整理集锦 5

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

TAG标签: 数学 知识点

高一数学必会必备知识点归纳整理集锦_精选范文网

学会发现问题,并重视质疑在学习中常看到成绩好的同学,总是有很多问题问老师。提出疑问不仅是发现真知的起点,而且是发明创造的开端。以下是小编给大家整理的高一数学的期中知识点整理归纳,希望大家能够喜欢!高一
推荐度:
点击下载文档文档为doc格式