北师大版初中数学知识点提纲经典模板
相关文章
今天,小编为大家整理了初中数学知识点,分条解析,掌握的更轻松,初中数学超全总结来啦!定理、公式、运算法则、辅助线… 一次函数、二次函数、平面几何、立体几何… 每个知识点都讲得明明白白!按照这份总结逐条复习,吃透重难点,考试再提10-20分不在话下
北师大版初中数学知识点提纲经典模板 1
第一章 有理数
一、有理数的分类
(1)按正负分,分为正有理数、零、负有理数;
(2)按整数和分数分,分为整数和分数;
二、有关概念
(1)相反数:代数意义和几何意义相结合,
(2)绝对值:
(3)倒数
(4)数轴
三、有理数大小的比较
主要分为利用数轴比较和利用绝对值比较
四、有理数的运算
(1)运算法则
①加法法则
②减法法则
③乘法法则
④除法法则
⑤乘方法则
(2)运算律
① 交换律:a、加法交换律 a+b=b+a
、乘法交换律 a×b=b×a
② 结合律:a、加法结合律 a+b+c=(a+b)+c
、乘法结合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科学记数法的概念
六、近似数的概念
示例:
例1 某食品包装袋上标有“净含量386克 4克”,则这包食品的合格净含量范围是( )克——390克。
根据正数、负数的意义可知,这包食品的合格净含量范围是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a与-2互为相反数,那么a等于( )
A、-2 B、2 C、- D、
根据相反数的特点,即“绝对值相等,符号相反”,可知-2的相反数为2.故正确答案为B。
(2)-5的绝对值是( )
A、5 B、-5 C、 D、-
有绝对值的概念可知,表示-5的点到原点的距离为5,故-5的绝对值为5。
(3)- 的倒数是( )
A、 B、 C、- D、-
根据倒数的定义知- 的倒数为1÷(- )=-
例3 比较大小:- 与-
这是两个负数比较大小,应先比较它们的绝对值的大小。
= = , = = 。
例4 计算:
有理数加减乘除混合运算顺序:先乘除,后加减,有括号应先算括号里的。
例5 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 575 306用科学记数法表示(精确到百万位)约为( )
A、66.6×10 B、0.666×10 C、6.66×10 D、6.66×10
665 575 306=6.655 753 06×10 ≈6.66×10 故选C
C
例6用四舍五入法,按括号里的要求对下列各数取近似值。
(1)0.069 99(精确到千分位)
(2)826 750(精确到千位)
(3)28 736(精确到千位)
精确到个位以下的数,用四舍五入或科学记数法取近似数都可以;精确到个位以上的数,应用科学记数法取近似数,对于较大的数,应该用科学记数法或表示时在后面加一个表示数位的汉字。
(1)0.069 99≈0.070
(2)826 750≈8.27×10 或表示为82.7万
(3)28 736≈2.9×10 或表示为2.9万
第二章 整式的加减
一、整式
1、单项式:有数字或字母的积组成的代数式叫做单项式。单独的一个数或一个字母也是单
项式。如: ab, m , -x
单项式的系数是指单项式中的数字因数;单项式的次数是指单项式中所有字母的指数和。
2、多项式:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。在多项式中,不含字母的项叫做常数项。多项式中次数最高的项的次数,就是这个多项式的次数。多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。
3、整式:单项式和多项式统称为整式。
二、整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。所有的常数项都是同类项。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
3、去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“—”,把括号和它前面的“—”号去掉后,原括号里各项的符号都要改变。
4、添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“—”,括号内各项的符号都要改变。
5、整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项。
※ 正式加减的一般步骤:
(1)如果有括号,那么先去括号;
(2)如果有同类项,那么先去括号;
(3)易错音难点:
a、确定单项式的系数时,应先把单项式写成数字因数与字母因数的积的形式,再确定。 b、多项式的项应包括它前面的符号,多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和。
c、判断两项是否为同类项时,不仅要看两项所含字母是否相同,还要看相同字母的指数是否相同,与所含字母的顺序无关。
d、合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变。 e、去括号时,如果括号前面是“—”,那么括号里各项都应变号;如果括号前有数字因数,那么应把数字因数乘到括号里,再去括号。
f、整式相加减时应加括号,把整式括起来,再加减。
示例
例1 判断下列代数式是不是单项式,如果不是,说明理由;如果是,指出它的系数与次数。
(1)x-4; (2) ; (3)-π ; (4)
此题可根据单项式的概念进行解答。
(1)不是,因为代数式出现了减法运算;
(2)不是,因为代数式是4与x的商;
(3)是,它的系数是—π,次数是2;
(4)是,它的系数是-π,次数是4.
例2 若单项式 与 的和仍是单项式,则m与n的值分别是( )
A、2,4 B、4,2 C、1,1 D、1,3
这两个单项式的和仍是单项式,也就是说这两个单项式是同类项,可得m、n的两个方程,解这两个方程即可求得m与n的值。2n-3=5,2m+4=8,解得n=4,m=2.
例3 计算:
(1)2x-(3x-5y)+(7y-x);
(1)由于括号前面的系数分别是-1和1,可以直接利用去括号法则去掉括号;
(2)去括号通常是按照从里到外,即先去掉小括号,再去掉中括号,最后去掉大括号的顺序进行,但对于此题来说,视小括号为一个“整体”由外向里,先去中括号,这样,小括号前面的“-”号变成“+”号,这样处理较为简便。
初中数学考试技巧
概念题检查要点概念题分填空、选择、判断三种题型。对于概念要知道、理解、应用。在平时经历知识的形成过程的基础上,记住是什么,并应用这些概念去填空、选择、判断。填空、选择时最好在草稿纸上写出思考的过程,需要计算的地方要反复计算。判断题你认为是对的要写出理论的根据是什么,如果你认为它是错的举上一个反例来说明它错就可以了。
如下面的两道判断题:
⑴小数都比0大,比1小( ).
⑵自然数不是奇数就是偶数( )。
可写分析如下:
⑴是错的,举一个反例来说明它错。1.1是小数,它比1大.
⑵题是对的,要说出理论的根据.自然数中除了能被2整除的数,就是不能被2整除的数。能被2整除的数是偶数,不能被2整除的数是奇数。所以,自然数不是奇数就是偶数。
选择题可以用排除法、代入计算法,选择时要把所有选项看完后,再做下一题,注意多选的情况,检查时要把所选的答案可以代入题中计算或者判断是否正确
02 计算题的答题检查技巧计算题,分直接写得数,简算,脱式计算和列式计算四种题型。总体来说计算题要做到四认真,即:认真抄题、认真做题、认真列竖式、认真检验。简算题的基础是运算定律和性质。
如:计算2.6×37+63×2.6时,
可考虑如下:
这个题是两边乘中间加,并且有相同的数字2.6,所以可以采用乘法的分配律,两边乘中间加,相同的数字往外拉,使计算简便.
即:2.6×37+63×2.6= 2.6×(37+63)= 2.6×100 =2.6。
检查时要重新反复计算3到5遍,先查数字和符号是否抄对了没有,再查运算顺序、最后查计算是否正确。
03应用题的答题检查技巧做应用题可以采用分析法分析,用综合法列式解答。考试做题时要采取先易后难的原则,先做自己比较熟悉有把握的题目,再做中等难度的题目,在遇到题目难度较大的题目时,如长时间思考不出,可以转换别的方法去进行思考,实在想不出来可以先放一放,也许在你思考别的题目的时候产生灵感。
检查时要学会将所求问题当成已知条件,通过计算看是否能推算出题中的一个条件。
解答和检查图形题时要特别注意单位名称是否统一,是否需要换算。同样应用题检查也要反复多检查题中数字是否抄写正确?计算是否正确?
04操作题的答题检查技巧操作题可能是让你画一个图形,或者量出图形的部分长度,做一些求面积或周长的计算,也可能让你做一个设计等,这些题目一般都是对我们的教材的原型作一些整合,不会太难,所以对这类题目一定要在认真分析,审清题意的基础上再下手去做。
注意:画图先用铅笔,确定没有问题后再用中性笔描画。(带齐画图工具:圆规、直尺、三角板)
北师大版初中数学知识点提纲经典模板 2
1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。
2. 专心听讲:
(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。
若老师讲到你早先预习时不了解的那部份,你就要特别注意。
有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。
(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。
待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。
3. 课后练习 :
(1) 整理重点
有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麼都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。
(2) 适当练习
重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。
(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。
4. 测验 :
(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。
(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。
(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。
北师大版初中数学知识点提纲经典模板 3
(1) 无限循环小数可以写成分数形式,所以是有理数。
(2)所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有有理数组成有理数集合。
(3)正数和0统称为非负数,负数和0统称为非正数。
北师大版初中数学知识点提纲经典模板 4
1.学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
4.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
5.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
6.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
7.弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
8.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。
9.在学习中要注意理解,开拓思路,变抽象为具体,逐渐培养自己学习数学的兴趣。
10.适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于进行分析,比较,综合,概念。
北师大版初中数学知识点提纲经典模板 5
乘法步骤:
1、确定符号:同号正,异号负。
2、绝对值:求积。
任何数与0相乘,都得0。任何数与-1相乘都得这个数的相反数。
多个有理数相乘的运算:
几个非0有理数相乘时,当负因数个数是偶数时,积为正;
负因数个数是奇数时,积为负;
乘法交换律,乘法结合律,乘法分配律;
北师大版初中数学知识点提纲经典模板_精选范文网




