首页 > 学习方法 > 备考资料

中考数学知识点梳理总结合集

发布时间: 浏览量:2

2022六年级数学知识点归纳有哪些你知道吗?我们在学习数学的过程中能锻炼自己观察事物的能力,分析判断力及创新能力,在以后的生活中,这些能力可以帮助我们把人生道路走得更好,使我们终生受益。一起来看看2022六年级数学知识点归纳,欢迎查阅!

中考数学知识点梳理总结合集 1

高中数学知识点复习

高考数学必考知识点

高中数学知识点提纲

中考数学知识点梳理总结合集 2

数学算术

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a b = b a

4、乘法结合律:a b c = a (b c)

5、乘法分配律:a b + a c = a b + c

6、除法的性质:a b c = a (b c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法: 被除数=商除数+余数

方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

代数: 代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

分数

分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

数量关系计算公式

单价数量=总价 2、单产量数量=总产量

速度时间=路程 4、工效时间=工作总量

加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数因数=积 一个因数=积另一个因数

被除数除数=商 除数=被除数商 被除数=商除数

长度单位:

1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

面积单位:

1平方千米=100公顷 1公顷=10000平方米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1亩=666.666平方米。

体积单位

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1升=1立方分米=1000毫升 1毫升=1立方厘米

重量单位

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

什么叫比:两个数相除就叫做两个数的比。如:25或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

比例的基本性质:在比例里,两外项之积等于两内项之积。

解比例:求比例中的未知项,叫做解比例。如3:=9:18

正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的.两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:xy = k( k一定)或k / x = y

百分数

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

要学会把小数化成分数和把分数化成小数的化发。

倍数与约数

最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

倍数特征:

2的倍数的特征:各位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:各位是0,5。

4(或25)的倍数的特征:末2位是4(或25)的倍数。

8(或125)的倍数的特征:末3位是8(或125)的倍数。

7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。

17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。

19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。

23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。

倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

互质关系的两个数,最大公约数为1,最小公倍数为乘积。

两个数分别除以他们的最大公约数,所得商互质。

两个数的与最小公倍数的乘积等于这两个数的乘积。

两个数的公约数一定是这两个数最大公约数的约数。

1既不是质数也不是合数。

用6去除大于3的质数,结果一定是1或5。

奇数与偶数

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

偶数偶数=偶数 奇数奇数=奇数 奇数偶数=奇数

偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数偶数=偶数 奇数奇数=奇数 奇数偶数=偶数

相临两个自然数之和为奇数,相临自然数之积为偶数。

如果乘式中有一个数为偶数,那么乘积一定是偶数。

奇数偶数

整除

如果c|a, c|b,那么c|(ab)

如果,那么b|a, c|a

如果b|a, c|a,且(b,c)=1, 那么bc|a

如果c|b, b|a, 那么c|a

小数

自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

纯小数:个位是0的小数。

带小数:各位大于0的小数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654

无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654

利润

利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)

利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

中考数学知识点梳理总结合集 3

一次方程与方程组

-----------3.1一元一次方程及其解法

①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)

3)经整理后方程中未知数的次数是1.

④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。方程的解代入满足,方程成立。

⑤等式的性质:

1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。a=b得:a+(-)c=b+(-)c

2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)

注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:

去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;

以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个

步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,

要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:

⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含

分母的项;分子是一个整体,去分母后应加上括号;

注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;

⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);

⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;

⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,

不能像计算或化简题那样写能连等的形式.

⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)

的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)

--------3.2一次方程的应用:

(一)、概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;

①解:设出未知数(注意单位),

②根据相等关系列出方程,

③解这个方程,

④答(包括单位名称,检验)。

⑵一些固定模型中的等量关系:

①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)

②行程问题:基本公式:路程=时间×速度

甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程

甲走的时间=乙走的时间;

甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离

③工程问题(整体1):基本公式:工作量=工作时间×工作效率

各部分工作量之和=总工作量;

④储蓄问题:本息和=本金+利息;利息=本金×利率×时间

⑤商品销售问题:商品利润=售价-进价(成本价)

商品利润率=(售价-进价)/进价

⑥等积变形问题:面积或体积不变

⑦和、差、倍、分问题:多、少、几倍、几分之几

⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x

⑨资源调配问题:资源、人员的调配(有时要间接设未知数)

(二)、思想方法(本单元常用到的数学思想方法小结)

⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.

⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想.

⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去

分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.

⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助

于线段示意图和图表等来分析数量关系,使问题中的数量关系很直

观地展示出来,体现了数形结合的优越性.

⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线

上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符

号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题

的过程中往往也要注意分类思想在过程中的运用.

-----------3.3二元一次方程组及其解法

①由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组

②消元法解方程组:

1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解(注意格式﹛)

2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。

3、加减消元法:把两个方程的两边分别相加或相减(左边-左边=右边-右边)消去一个未知数的方法,叫做加减消元法,简称加减法(一定要使某个未知数的系数相等或相反)

-------------3.4二元一次方程组的应用

两个未知数,两个相等关系(见一次方程的应用)

第四章直线与角

-------------4.1几何图形

形状:方的、圆的等

(1)①几何图形大小:长度、面积、体积等

位置:相交、垂直、平行等

②几何体也简称体。包围着体的是面。

③常见的立体图形:圆柱(一曲面二平面)、圆椎(一曲面一平面)、圆台、球(一曲面)、长方体(六面八点十二棱)、四面体(三棱锥)、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。)新课标第一网

④点线面体:是组成几何图形的基本元素(是几何图形);点动成线,线动成面,面动成体。

(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“Z字型”模型认识。

(3)三视图:主视图(从正面看)、左视图(从左面看)、俯视图

(从上面看)。

----------4.2直线、射线、线段

1.特点与表示方法:

①直线没有端点,向两方无限延伸(不能用延长描述),可用两个大

写字母或小字字母表示;

②射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意

一点表示;端点相同,延伸方向相同的两条射线是同一条射线(两个相同)。

③线段有两个端点,可用两个大写字母或小字字母表示(不能延长)。

2.连接两点间的线段的长度,叫做这两点之间的距离。

线段是图形,距离有大小。

3.经过两点有一条直线,并且只有一条直线。

(两点确定一条直线)。

4.经过两点的所有连线中----------线段最短(两点之间,线段最短)

------------4.3线段的长短比较

①线段的比较:叠合法(线段上、线段的延长线上)或度量法。

②中点:将一条线段分成两条相等的线段的点称这条线段的中点。

③线段的和、差、倍、分(整体求部分,部分求整体)可以设未知数

④点在线段上、点在线段的延长线上、甚至在线段外。

-----------4.4角

1、定义:有公共端点的两条射线组成的图形叫角。

角的端点为顶点,两条射线为角的两边(一条射线绕端点旋转后形成的图形)。

2、1°=60′1′=60″1周角=360度1平角=180度;

直角=90度;钟表上分针每分钟走6°,时针每分钟走0.5°.

3、度化为度、分、秒(整数不动,小数下放);

度、分、秒化为度(逐级上调)。

4、度、分、秒的加、减、乘、除(余数下放)运算:对口(秒与秒、分与分、度与度)运算,满60进1,借1算60

-----------4.5角的比较与补(余)角

①角的比较:叠合法(在角的内部、在角的外部)或度量法。

②角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。

③如果两个角的和等于90度(直角),(∠⒈+∠⒉=90°)就说这两个叫互为余角,即其中每一个角是另一个角的余角。(不要遗漏)。

④如果两个角的和等于180度(平角),(∠⒈+∠⒉=180°)就说这两个叫互为补角,即其中每一个角是另一个角的补角(不要遗漏)。

⑤等角(同角)的补角相等。等角(同角)的余角相等。

⑥角的和、差、倍、分(角在角的内部、在角的外部)可以设未知数

⑦方位角:北偏东30o(就是从北望东旋转30o),西南方向:就是南偏西45o

--------------4.6用尺规作线段与角

1、尺规作图:几何中,通常用没有刻度的直尺和圆规来画图,这种画

图的方法叫做尺规作图

2、作一条线段等于已知线段:(1)作一条射线AM(2)在射线AM

上,以点A为圆心,以线段a的长度为半径画弧,交射线AM于点B则

线段AB为所求作的线段

3、作一个角等于已知角:(1)在∠AOB上以O为圆心,任意长为半径画弧,分别交OA、OB于点P、Q

(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;

(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;

(4)作射线EF,∠DEF即为所求作的角

第五章数据的收集与整理

----------------5.1数据的收集

1、全面调查(普查):对全体对象进行的调查叫做全面调查

2、抽样调查:从被考察的全体对象中抽出一部分对象进行考察的调查方式

3、总体:所要考察对象的全体叫做总体

4、个体:其中的每一个考察对象叫做个体

5、样本:从总体中所抽取的一部分个体叫做总体的一个样本

6、样本容量:样本中个体的数目叫做样本容量

------------5.2数据的整理

1、常用的统计图:条形统计图、折线统计图、扇形统计图

2、扇形统计图:用圆和扇形来表示总体和部分的比例关系,即用圆(36

o)表示总体,用扇形表示构成总体的各个部分,通过扇形的大小来反

映各个部分占总体的百分率大小,像这样的统计图叫做扇形统计图

3、扇形的中心角计算公式:360°×该部分占总体的百分率

-------------5.3用统计图描述数据

(1)条形统计图能清楚表示出事物的绝对数量。

(2)折线统计图能清楚地反映事物的变化趋势。

(3)扇形统计图能清楚地表示各部分占总体的百分率。

--------------5.4从图表中的数据获取信息

图表带来有利于决策的各种信息的同时,使用不当的图表来表达数据,

会给人以误导。在从图表中获取信息时,要关注数据的来源、收集的

方法和描述的形式,以便获取更多合理的信息。

备注:①1+2+3+4+------+n=n×(n+1)/2②1+3+5+7+----+(2n-1)=n2

③2+4+6+8+-----+2n=n×(n+1)④1/2×3=1/2-1/3(1/3×4=1/3-1/4)

⑤22o13-22o12=22o12×(2-1)⑥98/99=1-1/99

⑦如果在直线a上有n个点(线段AB上有n个点可以构成(n+1)×(n+2)/2条线段),则共有2n条射线,n×(n-1)/2条线段;

⑧同一平面内有n条两两相交的直线,最少有一个交点,最多有n×(n-1)/2个交点;

⑨同一平面上共有n个点(n≥3),其中任意三个点都不在同一条直线上,那么连接任意两点,可画n×(n-1)/2条直线;

⑩平面上从点A发出n条射线,可以组成n×(n-1)/2个角;(角内发出n条射线,,可以组成(n+1)×(n+2)/2个角

中考数学知识点梳理总结合集 4

一、看书习惯

这是自学能力的基本功。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%~25%的知识是来自学校,而75%~80%的知识是靠他们离校后通过工作、自学和科研来获得的。根据心理规律,初中学生已经具备阅读能力,但由于在小学受直观模仿习惯的影响,使众多学生误把数学课本当作习题集。所以从初一开始就应重视纠正自己的错误学习习惯,树立数学课本同样需要阅读的正确思想,并注意总结如何阅读数学课本的方法。

1.每一节课前都务必养成预习的习惯,努力在预习中发现自己不懂的问题,以便能带着问题听讲。

课堂上注意老师如何阅读课文,从中培养自己掌握如何分析定义、定理中的关键字、词、句以及与旧知识的联系。

2.经常归纳总结学过的知识,培养复习习惯。

刚开始时,可跟着老师总结一节课或一个单元的内容,一个阶段后可根据老师提出的复习提纲,自己带着问题去钻研课文,最后过渡到由自己归纳,促使自己反复阅读课文,及时复习,温故知新。

二、笔记习惯

“好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。在“听”与“记”两个方面,听是基础,切莫只顾“记”而影响“听”。

为了使课堂笔记逐步提高质量,同学间应进行适当的交流,相互取长补短。

三、动手实践、合作交流习惯

“实践出真知”。动手实践能集中注意力,提高学习兴趣,能加深对学习对象的印象和理解。在动手实践中,能把书上的知识与实际事物联系起来,能形成正确深刻的概念。在动手实践中,能手脑并用,用实际活动逐步形成和发展自己的认知结构,能形成技能,发展能力。在动手实践中养成“做前猜想-----动手实验-----操作结果-----归纳总结”的习惯。

“三人同行,必有我师”。同学间相互交流学习结果,各抒己见,取长补短。能达到动脑、动口、动手、激发思维、活跃气氛、调动积极性的作用。

四、作业习惯

数学作业是巩固数学知识、激发学习兴趣、训练数学能力的重要环节。有些同学视作业为负担,课后只凭着课堂上的印象匆忙作答,往往解法单一;有的还字迹潦草、马虎粗心、格式不规范、甚至抄袭。这就错失了训练良机,严重地响了学习效果。应该正确认识做作业的目的性,培养良好的作业习惯。良好的作业习惯应包括:

1.要养成作业前看书的习惯。

做作业前要认真阅读复习课文、观察例题的解题格式、步骤和方法。这正是“磨刀不误砍柴功”。

2.要养成审题的习惯。

读题后,先弄清题目是什么题型、它有什么条件、有哪些特点等。

3.要养成独立作业的习惯。

若有特殊情况,不能如期完成,可向老师说明情况:如遇到难题不会做时,可向老师或同学请教,弄懂以后独立完成。切不可为了应付任务而去抄袭。

4.要养成对已做作业进行再思考的习惯。

不少同学不重视对已做作业进行再看、再思考,从而导致错误做法在头脑中形成定势。有的题目做错,老师订正过了,你还错,就是这个原因。常此下去,在新知识和做新作业中会出现更大的错误,为了巩固作业的成果,同学们在每次做新的作业之前,务必对前一天的作业进行反馈。反馈内容包括:(1)题目类型;(2)解题思路与方法;(3)出错问题的原因;(4)订正出错问题;(5)收集出错问题(就是将自己出错的问题专门收集在一个地方,标注出以上四项内容,以便将来复习时纠错)。

五、思维习惯

科学的思维方法和良好的思维习惯是开发智力、发展能力的钥匙。心理学告诉我们,初一阶段是学生从形象思维向抽象思维转变的重要时期,所以这时候一定要重视良好的思维习惯的培养。根据初中数学内容的特点,良好的思维习惯包括逻辑性、周密性、发散性、收敛性、逆向性。

1.逻辑性。

这是要求学生“答必有据”切忌想当然。在推理演算过程中,能够懂得其中每一步的依据,不懂之处就不写,设法弄懂之后再继续推理演算。

2.周密性。

这是要求学生全面的考虑问题。如:已知点C在直线AB上,线段AB=8cm,线段BC=3cm,求线段AC的长。全面考虑问题就要分点C在线段AB上和点C在线段AB的延长线上两类进行讨论:当点C在线段AB上时,AC=AB-BC=8-3=5cm;当点C在线段AB的延长线上时,AC=AB+BC=8+3=11cm。培养这种习惯,应特别注意老师在课堂上指出的“易出错或想不全”的情形与原因。

3.发散性。

这是要求学生运用多种办法解决一个问题。培养这个习惯,要特别注意老师在讲一题多解时的思考方法、问题推广延拓时的分析,在数学学习过程中努力养成寻求一题多解,一题多变的习惯。

4.收敛性。

这是在发散思维的基础上进行归纳总结,以达到多题一解、举一反三。发散与收敛两种思维综合运用可相得益彰。

5.逆向性。

这是要求学生把某些公式、法则、定理的顺序颠倒过来考虑。如计算:

(-0.38)×4.58-0.62×4.58,可以逆向运用乘法分配律,就得到简便计算的方法

lt;<<返回目录

中考数学知识点梳理总结合集 5

1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。

2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。

Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。

3、ax2+bx+c<0的解集为x(0

+c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+

4、c<0的解集为x,cx2—bx+a>0的解集为->x或x<-。

5、原命题与其逆否命题是等价命题。

原命题的逆命题与原命题的否命题也是等价命题。

6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。

A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。

7、原函数与反函数的单调性一致,且都为奇函数。

偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x).

8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;

偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0.

9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x

+a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x)

是T=4(b-a)的函数

10、复合函数的单调性满足“同增异减”原理。

定义域都是指函数中自变量的取值范围。

11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。

解此类抽象函数比较实用的方法是特殊值法和周期法。

12、指数函数图像的规律是:底数按逆时针增大。

对数函数与之相反.

13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。

在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。

14、log10N=lgN;logeN=lnN(e=2.718???);对数的性质:如果a>0,a≠0,M>0N>0,

那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.

换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.

15、函数图像的变换:

(1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到;

(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;

(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x).

(4) ,学习计划;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。

(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于

x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。

15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+

16、若n+m=p+q,则am+an=ap+aq;

k,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。

17、等比数列中,an=a1?qn-1=am?qn-m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1),

=,(q≠1);若q≠1,则有=q,若q≠—1,=q;

k,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:

=—,=?(—),常用数列递推形式:叠加,叠乘,

18、弧长公式:l=|α|?r。

扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时),

其面积为,其圆心角为2弧度。

19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;

Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ

TAG标签: 数学 知识点

中考数学知识点梳理总结合集_精选范文网

2022六年级数学知识点归纳有哪些你知道吗?我们在学习数学的过程中能锻炼自己观察事物的能力,分析判断力及创新能力,在以后的生活中,这些能力可以帮助我们把人生道路走得更好,使我们终生受益。一起来看看20
推荐度:
点击下载文档文档为doc格式