华东师大初二数学上册知识点范文精选集锦
相关文章
上学的时候,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。下面小编为大家带来2022数学初二上册知识点总结,希望大家喜欢!
华东师大初二数学上册知识点范文精选集锦 1
自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
华东师大初二数学上册知识点范文精选集锦 2
定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
华东师大初二数学上册知识点范文精选集锦 3
“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。
“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。
自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
华东师大初二数学上册知识点范文精选集锦 4
一、平面直角坐标系:
在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。
二、知识点与题型总结:
1、由点找坐标:
A点的坐标记作A( 2,1 ),规定:横坐标在前,纵坐标在后。
2、由坐标找点:例找点B( 3,-2 ) ?
由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。
各象限点坐标的符号:
①若点P(x,y)在第一象限,则x > 0,y > 0 ;
②若点P(x,y)在第二象限,则x < 0,y > 0 ;
③若点P(x,y)在第三象限,则x < 0,y < 0 ;
④若点P(x,y)在第四象限,则x > 0,y < 0 。
典型例题:
例1、点P的坐标是(2,-3),则点P在第四象限。
例2、若点P(x,y)的坐标满足xy>0,则点P在第一或三象限。
例3、若点A的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。
4、坐标轴上点的坐标符号:
坐标轴上的点不属于任何象限。
① x轴上的点的纵坐标为0,表示为(x,0),
② y轴上的点的横坐标为0,表示为(0,y),
③原点(0,0)既在x轴上,又在y轴上。
例4、点P(x,y )满足xy = 0,则点P在x轴上或y轴上。 .
5、与坐标轴平行的两点连线:
①若AB‖ x轴,则A、B的纵坐标相同;
②若AB‖ y轴,则A、B的横坐标相同。
例5、已知点A(10,5),B(50,5),则直线AB的位置特点是(A )
A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直
6、象限角平分线上的点:
①若点P在第一、三象限角的平分线上,则P( m, m );
②若点P在第二、四象限角的平分线上,则P( m, -m )。
例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。
解:由条件可知:2a+1 +(2+a)=0,解得a = -1,
∴ A(-1,1)。
例7、已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。
解:当在一、三象限角平分线上时,a+1=3a-5,
解得:a=3 ∴ M(4,4)
当在二、四象限角平分线上时,a+1+(3a-5 )=0,
解得:a=1 ∴ M(2,-2)
∴M的坐标为(4,4)或(2,-2)
7、关于坐标轴、原点的对称点:
①点(a, b )关于X轴的对称点是(a , -b );
②点(a, b )关于Y轴的对称点是( -a , b );
③点(a, b )关于原点的对称点是( -a , -b )。
例8、已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于原点的对称点的坐标。
解:由条件得:3a-1=1+a解得:a=1,∴ A(2,2),
∴ A关于原点的对称点的坐标为(-2,-2)。
8、点到坐标轴的距离:
①点( x, y )到x轴的距离是∣y∣;
②点( x, y )到x轴的距离是∣x∣。
例9、点P到x轴、y轴的距离分别是2,1,则点P的坐标可能为?
答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。
三、知识拓展与提高:
例10、在平面直角坐标系中,已知两点A(0,1),B(8,5),点P在x轴上,则PA + PB的最小值是多少?
解:作点A(0,1)关于x轴的对称点A'(0,-1),连接A'B与x轴交于点P,
则A'B路径最短,即PA + PB最小。
根据勾股定理得:A'B = √[(1+5)^2 + 8^2] = 10 。
∴PA + PB的最小值是10 。
华东师大初二数学上册知识点范文精选集锦 5
1 全等三角形的对应边、对应角相等
2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的.各角都相等,并且每一个角都等于60°
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角形
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38 定理 四边形的内角和等于360°
39 四边形的外角和等于360°
40 多边形内角和定理 n边形的内角的和等于(n-2)×180°
华东师大初二数学上册知识点范文精选集锦_精选范文网




