初二数学课文知识点总结推荐
相关文章
各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是小编给大家整理的一些八年级数学知识点的学习资料,希望对大家有所帮助。
初二数学课文知识点总结推荐 1
一该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。
因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度.时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。
物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。
初二数学课文知识点总结推荐 2
【二次根式的乘除】
1.积的算数平方根的性质
列如:√ab=√a?√b(a≥0,b≥0)
2.乘法法则
列如:√a?√b=√ab(a≥0,b≥0)
二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.除法法则
√a÷√b=√a÷b(a≥0,b>0)
二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
4.有理化根式。
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
【二次根式】
I.二次根式的定义和概念
1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。
II.二次根式√ā的简单性质和几何意义
1)a≥0;√ā≥0[双重非负性]
2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]
3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。
III.二次根式的性质和最简二次根式
1)二次根式√ā的化简
a(a≥0)
√ā=|a|={
-a(a<0)
2)积的平方根与商的平方根
√ab=√a?√b(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
3)最简二次根式
条件:
(1)被开方数的因数是整数或字母,因式是整式;
(2)被开方数中不含有可化为平方数或平方式的因数或因式。
如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y等;
含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等
初二数学课文知识点总结推荐 3
【解一元一次方程】
1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于"和,差,倍,分问题"
仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于"行程问题"
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
初二数学课文知识点总结推荐 4
(一)首先要作好思想准备
不管是哪种考试,要认识到考试的重要性,它是对自己学过的知识是否掌握多少的一次检验,反映出你学习过程中的成绩和存在的问题。所以思想上正确认识了,重视了,你就能全心地投入到复习过程中去。
(二)制定的复习计划
根据学科特点制定出适合自己的切实可行的复习计划,对后几天的学习作出详细、科学、合理的安排,以便心中有数。同时要明确重点,攻克难点,侧重疑点。在对知识点进行梳理的时候应抓住重点、难点和疑点。复习更重要的是查漏补缺。
(三)复习的方法多种多样
不同的方法也许适用于不同的人,我们应在实际运用中找到适合自己的复习方法,同时应注意不断地变换自己的复习方法。复习中要文理科交替,因为文理科交替复习能减少学科知识间的互相干扰和相互摄制,利于记忆,增强知识在脑海里的时间性。
(四)适当做些综合题
综合题能反映出你对该学科的知识掌握的全面性。因为一门学科的知识之间都存在着密切联系,如果你做综合题做得较顺利,证明你在系统复习中对该学科的知识掌握是比较完善和系统化复习工作是做得较好的。如数学中的综合运算题就反映出你是否掌握各种运算法则和运算技能。这会增强你综合知识运用的能力。
(五)坚持做好系统复习
要认识相对集中的复习时间的宝贵,不能轻易浪费,所以要十分珍惜。把各学科的知识系统地进行整理,克服放松情绪。
(六)强化记忆,查漏补缺
在系统复习中,将平时自己在学习过程中对某方面的内容掌握不够的、理解还欠深刻的内容及时补正,达到完美无缺。
初二数学课文知识点总结推荐 5
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四总结”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
初二数学课文知识点总结推荐_精选范文网




