七年级数学基础知识点精选合集
相关文章
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
七年级数学基础知识点精选合集 1
镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
七年级数学基础知识点精选合集 2
(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同零相乘,都得0。
(3)多个有理数相乘的法则:
①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
②几个数相乘,有一个因数为0,积就为0。
(4)方法指引
①运用乘法法则,先确定符号,再把绝对值相乘.
②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.
七年级数学基础知识点精选合集 3
(一)、概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;
①解:设出未知数(注意单位),
②根据相等关系列出方程,
③解这个方程,
④答(包括单位名称,检验)。
⑵一些固定模型中的等量关系:
①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)
②行程问题:基本公式:路程=时间×速度
甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程
甲走的时间=乙走的时间;
甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离
③工程问题(整体1):基本公式:工作量=工作时间×工作效率
各部分工作量之和=总工作量;
④储蓄问题:本息和=本金+利息;利息=本金×利率×时间
⑤商品销售问题:商品利润=售价-进价(成本价)
商品利润率=(售价-进价)/进价
⑥等积变形问题:面积或体积不变
⑦和、差、倍、分问题:多、少、几倍、几分之几
⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x
⑨资源调配问题:资源、人员的调配(有时要间接设未知数)
七年级数学基础知识点精选合集 4
使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
七年级数学基础知识点精选合集 5
生活中的轴对称
1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。
3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
联系:它们都是图形沿某直线折叠可以相互重合。
2、成轴对称的两个图形一定全等。
3、全等的两个图形不一定成轴对称。
4、对称轴是直线。
5、角平分线的性质
1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
6、线段的垂直平分线
1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
7、轴对称图形有:
等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
8、等腰三角形性质:
①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
9、①“等角对等边”∵∠B=∠C∴AB=AC
②“等边对等角”∵AB=AC∴∠B=∠C
10、角平分线性质:
角平分线上的点到角两边的距离相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
∵OC垂直平分AB∴AC=BC
12、轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。
2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
13、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
七年级数学基础知识点精选合集_精选范文网




