高中高二数学知识点大全推荐
相关文章
在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。下面是小编给大家带来的高二数学知识点框架整合,以供大家参考!
高中高二数学知识点大全推荐 1
1.等差数列通项公式
an=a1+(n-1)d
=1时a1=S1
≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
=n(a1+an)÷2=na1+n(n-1)d÷2
=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_,有
k,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
高中高二数学知识点大全推荐 2
1.考虑:考虑是数学学习方法的核心。在学这门课中,考虑有重大意义。解数学题时,首先要观察、分析、考虑。考虑往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于考虑,经常开动脑筋的习惯,于是脑子就越用越灵,勤于考虑变成了善于考虑。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。
2.动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,我经常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自身对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。
3.培养发明精神:所谓发明,就是想出新方法,做出新成果,建立新理论。发明,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自身去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。
科学的学习方法在课内课外应注意些什么呢?
高中高二数学知识点大全推荐 3
复合函数定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
复合函数常见题型
(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
高中高二数学知识点大全推荐 4
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp、空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp、空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
高中高二数学知识点大全推荐 5
数学学习要注重提升素养承认“解题”对数学学习的作用,并不是无限制地扩大它的价值,毕竟解题只是数学学习的途径与手段,绝不是数学学习的终极目标。在新课程背景下,许多学者呼吁从关注“双基”到“四基”,数学学习的目标在于掌握必需的基础知识和基本技能,积累丰富的活动经验,体悟数学的基本思想。数学学习不只是解题,在学习的过程中还将学会观察,学会思考,学会表达,学会书写,学会合作。著名特级教师张天孝研究小学数学教学50年,他有一个治学心得是:“让学生在学习中学会学习,在思考中学会思考。”这正是对数学学习目标的精辟提升。
如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。美国统计学家戴维〃S〃穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。数学学习过程中所倡导的思考方式是具有学科特点的。看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。这种量化、精确化的思考方式是数学教学最根本的目标价值所在。
高中高二数学知识点大全推荐_精选范文网




