首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二数学知识点总结上册5篇

发布时间: 浏览量:11

在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。下面给大家分享一些关于高二数学知识点总结上册,希望对大家有所帮助。

高二数学知识点总结上册1

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.

1.已知抛物线的标准方程为x2=4y,则下列说法正确的是()

A.开口向左,准线方程为x=1B.开口向右,准线方程为x=﹣1

C.开口向上,准线方程为y=﹣1D.开口向下,准线方程为y=1

2.命题p:?x0>1,lgx0>1,则¬p为()

A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

3.在平行六面体ABCD﹣A1B1C1D1中,化简++=()

A.B.C.D.

4.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,事件A表示“2名学生全不是男生”,事件B表示“2名学生全是男生”,事件C表示“2名学生中至少有一名是男生”,则下列结论中正确的是()

A.A与B对立B.A与C对立

C.B与C互斥D.任何两个事件均不互斥

5.已知甲、乙两名同学在某项测试中得分成绩的茎叶图如图所示,x1,x2分别表示知甲、乙两名同学这项测试成绩的众数,s12,s22分别表示知甲、乙两名同学这项测试成绩的方差,则有()

A.x1>x2,s12s22

C.x1=x2,s12=s22D.x1=x2,s12

6.设直线l的方向向量是=(﹣2,2,t),平面α的法向量=(6,﹣6,12),若直线l⊥平面α,则实数t等于()

A.4B.﹣4C.2D.﹣2

7.执行如图程序框图,若输出的S值为62,则判断框内为()

A.i≤4?B.i≤5?C.i≤6?D.i≤7?

8.下列说法中,正确的是()

A.命题“若x≠2或y≠7,则x+y≠9”的逆命题为真命题

B.命题“若x2=4,则x=2”的否命题是“若x2=4,则x≠2”

C.命题“若x2<1,则﹣11”

D.若命题p:?x∈R,x2﹣x+1>0,q:?x0∈(0,+∞),sinx0>1,则(¬p)∨q为真命题

9.知点A,B分别为双曲线E:﹣=1(a>0,b>0)的两个顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则双曲线E的离心率为()

A.B.2C.D.

10.如图,MA⊥平面α,AB?平面α,BN与平面α所成的角为60°,且AB⊥BN,MA=AB=BN=1,则MN的长为()

A.B.2C.D.

二、填空题:本大题共5小题,每小题5分,共25分)

11.若双曲线﹣=1的焦距为6,则m的值为.

12.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中,抽取一个容量为100的样本,则应从丙地区中抽取个销售点.

13.已知两个具有线性相关关系的变量x与y的几组数据如下表

x3456

y

m4

根据上表数据所得线性回归直线方程为=x+,则m=.

14.在长为4cm的线段AB上任取一点C,现作一矩形,邻边长等于线段AC,CB的长,则矩形面积小于3cm2的概率为.

15.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上的任意一点,线段PF的垂直平分线和半径PE相交于点Q,则动点Q的轨迹方程为.

三、解答题:本大题共6小题,共75分.

16.已知实数p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0

(Ⅰ)若m=2,那么p是q的什么条件;

(Ⅱ)若q是p的充分不必要条件,求实数m的取值范围.

17.一果农种植了1000棵果树,为估计其产量,从中随机选取20棵果树的产量(单位:kg)作为样本数据,得到如图所示的频率分布直方图.已知样本中产量在区间(45,50]上的果树棵数为8,.

(Ⅰ)求频率分布直方图中a,b的值;

(Ⅱ)根据频率分布直方图,估计这20棵果树产量的中位数;

(Ⅲ)根据频率分布直方图,估计这1000棵果树的总产量.

18.盒子中有5个大小形状完全相同的小球,其中黑色小球有3个,标号分别为1,2,3,白色小球有2个,标号分别为1,2.

(Ⅰ)若从盒中任取两个小球,求取出的小球颜色相同且标号之和小于或等于4的概率;

(Ⅱ)若盒子里再放入一个标号为4的红色小球,从中任取两个小球,求取出的两个小球颜色不同且标号之和大于3的概率.

19.如图,等边三角形OAB的边长为8,且三个顶点均在抛物线E:y2=2px(p>0)上,O为坐标原点.

(Ⅰ)证明:A、B两点关于x轴对称;

(Ⅱ)求抛物线E的方程.

20.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D为AB的中点

(Ⅰ)求证:AC⊥BC1;

(Ⅱ)求异面直线AC1与CB1所成角的余弦值;

(Ⅲ)求二面角D﹣CB1﹣B的余弦值.

21.已知椭圆C:+=1(a>b>0)的左、右焦点为F1(﹣2,0),F2(2,0),点M(﹣2,)在椭圆C上.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)已知斜率为k的直线l过椭圆C的右焦点F2,与椭圆C相交于A,B两点.

①若|AB|=,求直线l的方程;

②设点P(,0),证明:?为定值,并求出该定值.

高二数学知识点总结上册2

一、变量间的相关关系

1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

二、两个变量的线性相关

1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

当r>0时,表明两个变量正相关;

当r<0时,表明两个变量负相关.

r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

三、解题方法

1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

3.由相关系数r判断时|r|越趋近于1相关性越强.

高二数学知识点总结上册3

一、变量间的相关关系

1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

二、两个变量的线性相关

1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

当r>0时,表明两个变量正相关;

当r<0时,表明两个变量负相关.

r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

三、解题方法

1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

3.由相关系数r判断时|r|越趋近于1相关性越强.

高二数学知识点总结上册4

圆与圆的位置关系

1、利用平面直角坐标系解决直线与圆的位置关系;

2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论.

高二数学知识点总结上册5

反函数:

(1)定义:

(2)函数存在反函数的条件:

(3)互为反函数的定义域与值域的关系:

(4)求反函数的步骤:

①将看成关于的方程,解出,若有两解,要注意解的选择;

②将互换,得;

③写出反函数的定义域(即的值域)。

(5)互为反函数的图象间的关系:

(6)原函数与反函数具有相同的单调性;

(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

高二数学知识点总结上册5篇_精选范文网

在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。下面给大家分享一些关于高二数学知识点总结上册,希望对大家有所帮助。高二数学知识点总结1分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。两种方法1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2.先以分层
推荐度:
点击下载文档文档为doc格式