首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二数学理科上册的总知识点概括5篇

发布时间: 浏览量:12

我们只要在学习过程中重视思考问题和探究问题,你的能力就会在不知不觉中得到提高,为高三复习阶段深化知识网络结构提供基础。以下是小编给大家整理的高二数学理科上册的总知识点概括,希望能助你一臂之力!

高二数学理科上册的总知识点概括1

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学理科上册的总知识点概括2

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知圆C:(x﹣2)2+(y+1)2=4,则圆C的圆心和半径分别为()

A.(2,1),4B.(2,﹣1),2C.(﹣2,1),2D.(﹣2,﹣1),2

2.当m∈N-,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()

A.若方程x2+x﹣m=0有实根,则m>0

B.若方程x2+x﹣m=0有实根,则m≤0

C.若方程x2+x﹣m=0没有实根,则m>0

D.若方程x2+x﹣m=0没有实根,则m≤0

3.已知命题p:?x>0,x3>0,那么¬p是()

A.?x>0,x3≤0B.

C.?x<0,x3≤0D.

4.已知一个几何体的三视图如图所示,则该几何体的体积为()

A.8πB.4πC.2πD.π

5.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()

A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4

6.在区间[0,3]上随机地取一个实数x,则事件“1≤2x﹣1≤3”发生的概率为()

A.B.C.D.

7.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为6,4,则输出a的值为()

A.0B.2C.4D.6

8.在班级的演讲比赛中,将甲、乙两名同学的得分情况制成如图所示的茎叶图.记甲、乙两名同学所得分数的平均分分别为甲、乙,则下列判断正确的是()

A.甲<乙,甲比乙成绩稳定B.甲>乙,甲比乙成绩稳定

C.甲<乙,乙比甲成绩稳定D.甲>乙,乙比甲成绩稳定

9.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()

A.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件

B.当m?α时,“m⊥β”是“α⊥β”的充分不必要条件

C.当m?α时,“n∥α”是“m∥n”必要不充分条件

D.当m?α时,“n⊥α”是“m⊥n”的充分不必要条件

10.如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值为()

A.B.C.D.

11.已知命题p:函数f(x)=x2﹣2mx+4在[2,+∞)上单调递增;命题q:关于x的不等式mx2+2(m﹣2)x+1>0对任意x∈R恒成立.若p∨q为真命题,p∧q为假命题,则实数m的取值范围为()

A.(1,4)B.[﹣2,4]C.(﹣∞,1]∪(2,4)D.(﹣∞,1)∪(2,4)

12.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,给出以下结论:

①直线A1B与B1C所成的角为60°;

②若M是线段AC1上的动点,则直线CM与平面BC1D所成角的正弦值的取值范围是;

③若P,Q是线段AC上的动点,且PQ=1,则四面体B1D1PQ的体积恒为.

其中,正确结论的个数是()

A.0个B.1个C.2个D.3个

二、填空题:本大题共4小题,每小题5分,共20分.

13.根据如图所示的算法语句,当输入的x为50时,输出的y的值为.

14.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.

15.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.

16.若直线y=x+b与曲线y=3﹣有两个公共点,则b的取值范围是.

三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.

17.已知命题p:x2﹣8x﹣20≤0,命题q:[x﹣(1+m)]?[x﹣(1﹣m)]≤0(m>0),若p是q的充分不必要条件,求实数m的取值范围.

18.已知圆C过点A(1,4),B(3,2),且圆心在x轴上,求圆C的方程.

19.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,底面ABC等边三角形,E,F分别是BC,CC1的中点.求证:

(Ⅰ)EF∥平面A1BC1;

(Ⅱ)平面AEF⊥平面BCC1B1.

20.某校高中一年级组织学生参加了环保知识竞赛,并抽取了20名学生的成绩进行分析,如图是这20名学生竞赛成绩(单位:分)的频率分布直方图,其分组为[100,110),[110,120),…,[130,140),[140,150].

(Ⅰ)求图中a的值及成绩分别落在[100,110)与[110,120)中的学生人数;

(Ⅱ)学校决定从成绩在[100,120)的学生中任选2名进行座谈,求此2人的成绩都在[110,120)中的概率.

21.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1﹣BCDE.

(Ⅰ)证明:CD⊥平面A1OC;

(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.

22.已知圆C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R).

(Ⅰ)若a=1,求直线y=x被圆C所截得的弦长;

(Ⅱ)若a>1,如图,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.

高二数学理科上册的总知识点概括3

1、圆的定义

平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(x-a)^2+(y-b)^2=r^2

(1)标准方程,圆心(a,b),半径为r;

(2)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

练习题:

2.若圆(x-a)2+(y-b)2=r2过原点,则()

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】选B.因为圆过原点,所以(0,0)满足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

高二数学理科上册的总知识点概括4

圆与圆的位置关系

1、利用平面直角坐标系解决直线与圆的位置关系;

2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论.

高二数学理科上册的总知识点概括5

复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。

高二数学理科上册的总知识点概括5篇_精选范文网

我们只要在学习过程中重视思考问题和探究问题,你的能力就会在不知不觉中得到提高,为高三复习阶段深化知识网络结构提供基础。以下是小编给大家整理的高二数学理科上册的总知识点概括,希望能助你一臂之力!高二数学
推荐度:
点击下载文档文档为doc格式