高三文科数学知识点考点解析范文参考
相关文章
一般高三数学二轮复习都是承上启下的,那么高三数学二轮应该怎么复习呢?下面,小编就详细为大家介绍下。
高三文科数学知识点考点解析范文参考 1
1.三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.一定要全面了解数学概念,不能以偏概全。
4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
7.在学习中,要有意识地注意知识的迁移,培养解决问题的能力。
8.要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。
9.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
10.在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
11.学习数学,不仅要关注题型,更要关注典型题型。
12.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。
13.学习数学,要熟记并正确地叙述概念和规律性内容。
14.在学习中要注意理解,开拓思路,变抽象为具体,逐渐培养自己学习数学的兴趣。
15.适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于进行分析,比较,综合,概念。
16.数学学习最忌讳的就是对所学的知识模糊不清,各知识点混淆在一起,为了避免这一状况,同学们要学会写“知识结构小结”。
17.学会对题型题目的拆分和组合,学会从多角度,多方面来分析和解决典型题目,从中概括出基本题型和基本规律方法。
18.将同一类数学知识根据相互之间的联系归纳成一个有机整体,从而达到整体记忆的目的。
19.结合各类题的特点进行专项性训练,多与同学和老师交流,沟通,汲取他人的智慧,节约时间,提高做题速度和质量,提高应变能力。
20.学习数学要循序渐进,只要打好了根基,才能逐步提高。
21.解决数学问题,关键是建立正确的数学理念,要从数学角度去思考,利用数学规律去解决。
22.上课认真听讲是打好数学基础的重要环节,也是牢固掌握基础知识的根本途径。
23.在解决问题时,我们可以试着用不同的方法,如假设法,特殊值法,整体法。
24.深刻理解知识点,仔细阅读课本,认真听讲,理解联系实际。
25.认真听讲,一方面能更好地掌握知识的来龙去脉,加深理解,另一方面,还能学会老师分析问题,解决问题的思路方法。
26.听老师讲评时,自己要先想一想该题如何做,然后看老师的解法是否相同,即想一想自己是否跟老师的思路相同。看并想老师板书上的解题过程,想想自己是否也能这样写,想想老师的解题过程是不是有漏洞。
27.预习时需要注意三点:第一,学会用笔;第二,重视课后习题;第三,分层预习。
28.不要为某一门或几门课程的学习成绩不理想而烦恼,尽情地发挥你的特长,他能帮你重塑自信,要知道,自信是成功的第一要诀。
29.在课堂上要注意以下三点:第一,神情专注,紧跟讲课思路;第二,善于做笔记;第三,积极回答问题,勇于提出问题。
30.要想真正了解,认识和评价自己,需要有直面自我和揭露自我的勇气。
31.复习是一个对所学知识进行巩固和提高的过程。
32.知道事物应该是什么样,说明你是聪明的人;知道事物实际是什么样,说明你是有经验的人;知道怎样使事物变得更好,说明你是有才能的人。
33.人们常说,时间就是生命,那么管制时间就是支配生命,学会管理自己的时间,我们就可以做时间的主人,做生命的主人,做自己的主人。
34.化整为零的做法看似麻烦,其实效率很高,因为它符合人脑记忆的规律,反而能够节约时间。
35.比喻可以将平淡无味的知识变为生动有趣的知识,老师总是善于运用比喻加深学生们的理解,学生们也要善于利用比喻来帮助自己记忆。
36.透彻理解的基础是深刻记忆,教学知识以理解和运用的方式记忆最为适宜,如果有形式相近的公式,定理等,可以通过对比列表的方式记忆。
37.不要将学习看成是一个枯燥的逻辑思维过程,在自己的学习生活中,大胆地运用想象力,对于提高学习成绩是很有帮助的。
38.如果我们将每一次上课都当成一次小小的战斗,那么,课前充分预习则如同战前的秣马厉兵一样,是非常必要的。
39.面对挫折要有意识地调节自己的心理状态,不要把注意力放在体验痛苦上面。
40.保持身体健康,维护机体活力,是一份持久的工作,要注意培养自己良好的习惯,坚持锻炼,保证生活节制有序。
41.学会清理和表达自己的情绪和情感,认识情绪与自己身心健康的重大关系,进而学会调节和控制自己的情绪,拥有健康快乐的青春年华。
42.学习是一项长期而艰苦的脑力劳动,如果学习过于紧张,持续时间过长,就会产生学习疲劳。
43.学习疲劳不仅会影响你的学习效率,更重要的是,过度的学习疲劳还会伤害你的身体,影响你的健康。
44.俗话说,一分耕耘,一分收获。人要成长,就要付出努力,学习并不是一件轻松的事,要想取得好成绩就必须付出相应的劳动。
45.数和形的种.种内在联系,特别是它们的本质属性和科学规律,仅仅依靠感觉,知觉或表象是难以认识的,只要通过思维才能深刻理解,牢固掌握。
46.人不光要靠他生来就拥有的一切,更要靠他从学习中所得的一切来造就自己。
47.急功近利容易导致失败,学习应该是循序渐进的。
48.针对不同类型的题目,我们可以用各种各样的方法,在练习中要根据实际情况选择正确的方法,就会省时省力地完成题目。
49.听课时应该始终跟着老师的思路,善于抓住老师讲解中的关键词,构建自己的知识结构。
50.把上一节课解题时的分析推理过程重新感悟,提炼一下,有助于对新课程内容的理解。
51.利用图表进行比较复习,能帮助我们准确,到位地复习所学的知识。
52.对于有明显递进关系的知识,可以画一个知识线路图。
53.做题十固知识最有效的方法,是学习过程中不可忽视的一个重要环节。
54.不要觉得课本的例题老师讲过就算过去了,要知道例题往往最能考查你的基本知识掌握得是否牢固。
55.题后思考是我们提高知识层次,加深思维深度,增强自己思维严密性的一种行之有效的方法。
56.把做完的结果代入题目中,看能否反向求解出原题所给的已知量,或是从求得的结论向已知条件退导,看是否与原题的已知条件吻合。
57.“工欲善其事,必先利其器”—优秀学生都非常善于使用学习资料巩固记忆,从而提高成绩。
58.课本始终是同学们学习的重点,因此,我们不仅要把课本中的概念,公式掌握牢固,而且不能忽略课本中的小细节。
59.参考书上的三类题目不必做:已经完全掌握了的题目不必做,超出中考大纲的题目不必做,太偏太怪的题目不必做。
60.老师所提的问题,往往是相关知识的重点,难点或是学生容易出错的地方,当别的同学发言时,要注意听,边听边分析。
61.课堂上记笔记是我们提高听课效率最重要的方法之一,优秀笔记记录的是一堂课的重点,难点和疑点。
62.在课堂上要善于捕捉对自己有用的信息,这些信息中既包括知识性的,又包括方法性的。
63.课前预习的任务:一是初步理解下一步要学的基础知识;二是复习巩固与新内容相联系的旧知识;三书纳新知识的重点,找出自己不理解的难点。
64.要保证自己的学习效率,就要多做和自己水平相适应的题目,这样既有成就感又能提高自己的解题能力。
65.记录自己每天的学习时间,而且要比较精确的记录,可以准备一个小本子,把每个时间段做事都记录在上面。
66.对中学生来说,脑子清醒的时候宜从事比较难的学习,钻研比较深的问题;脑子比较疲劳的时候宜做简单点的习题。
67.寒暑假在学习上一定要做的是:复习上学期的课程,把薄弱环节加强一下;预习下学期将要学习的内容。
68.相对文科来说,理科更重视解体的过程和细节,更重视举一反三和动手操作能力。
69.从老师的讲解中舍弃那些本质的表面材料,去粗取精,归纳出老师所讲内容的梗概,领会老师讲解的要点。对于课堂上所学的新知识,解题既是一种检验,同时又十固记忆的需要。
70.老师讲课的内容比较新颖时,要使自己尽可能融入这一情景中,获得对这一刺激的鲜明印象以及轻松愉快的心境。
71.上课是要抓住老师的思路,老师讲的每一个细小的问题都不能放过,还要特别注意老师叙述问题的逻辑性。
72.听课遇到的困难或者问题时,先在课本上做个记号,继续听课,下课后再通过看书或者请教老师和同学把难题疑问搞清楚。
73.重视老师讲课时的提示语,这些提示语往往体现了重点和难点。
74.一定要有意识的捕捉解题,分析教材,记笔记,总结,系统归类,对比,演示,变式等技巧。听课不过是接受信息的一种方式,所以善于听课者一定是以自己为主,分辨什么是有用信息,什么是无用的信息。
75.整理思路,把老师讲的思路或者自己听课过程中想到的思路归纳整理出来,简要的写在笔记本上。
76.细心做题,做题的关键是要保证准确和规范,这就需要大家在平时养成做题认真细心,步骤完整,思路严密的好习惯。
77.作业必须检查,检查是保证作业质量的重要手段之一。
78.作业做完后认真思考,想一想这些作业题运用了哪些知识点,有什么特点和规律可循。
79.当发现自己对某一门功课不感兴趣的时候,要及时地提醒自己这门功课的重要性,确立学好这门功课的决心。
80.保持良好心态,做作业是要平心静气,专心致志。
81.在作业量非常大的情况下,要分段完成作业。
82.以一颗平常心对待,在对难题完全没有思路的情况下可以考虑请教别人。
83.要格外重视综合性强,难度大的题目,也就是试卷上最后的一至三道大题。
84.记忆能力直接影响我们的学习能力,记忆技巧是我们学习的关键因素,好的记忆方法可以使我们记东西更快,学习效率更高。
85.做作业是对课堂学过的知识进行检验和巩固的一种方式,通过作业题的练习,不但能够巩固自己学过的知识,还可以加深理解和记忆。
86.要有目的性的使用参考书,根据自己的实际情况,有目的的选择一部分题目进行训练,比如选择自己不会做或者经常出错的题型。
87.参考书最好的使用方式是与教学进度同步或者略微超前一些,这样可以提高课堂学习效率,并且使课堂学习更有针对性。
88.不要把参考书当做课堂上的小电脑,应当做作业的小助手。
89.答题做到言简意赅,注意克服紧张不安的心理,保持良好的心态。
90.认识和理解推导过程是一个投入思维领悟的过程,这有助于我们通过理解去记忆结论,提高分析问题和运用知识的能力。要明确老师的教学目的,注意哪些内容可能跟疑难点,重点有密切关联。
91.学习是要归纳解题方法,一书纳科学的思维方法,二书纳重要题型的解题方法。
92.要熟练掌握每一种方法的实质,解题步骤,和适用的题型。
93.要注意典型方法的适用范围和使用条件,避免生硬的套用公式,导致错误。
94.对于基础薄弱的同学,掌握课本上的典型题目才是最重要的。
95.做难题要从自己的实际学习情况出发,做题要在老师的指导下由浅入深,由易到难,循序渐进,这样才能少走弯路。
96.解题思路是解题的指导思想,是做对题目的首要条件。
97.不仅要熟悉知识的纵向联系,而且要熟悉知识的横向联系,逆向联系,达到信手拈来,呼之既出的程度。
98.不仅要会做题,还要努力探索题目是怎样编拟出来的,这样不仅可以打破题目的神秘性,还可以熟悉解题途径。
99.平时做题时努力做到一次成功,而不是等重新检查的时候再去发现自己的错误。
100.对同一题目运用多种思路,找出多种解法。一题多用,就是把求得的结果作为已知条件,然后把某个已知条件改为所求问题,再进行分析解答。一题多变,把题目中的某个术语或者重要语句换成其他的术语或者语句,然后进行解答。一题多练,对一些较难的题目从多方面进行练习,如画图,文字分析,列式解答,验算等,把题目彻底弄明白。
高三文科数学知识点考点解析范文参考 2
“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。
三角函数诱导公式大全
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2±α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
两角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan2α=2tanα/[1-tan2(α)]
tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα
半角的正弦、余弦和正切公式
sin2(α/2)=(1-cosα)/2
cos2(α/2)=(1+cosα)/2
tan2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
万能公式
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=[2tan(α/2)]/[1-tan2(α/2)]
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin3(α)
cos3α=4cos3(α)-3cosα
tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]
三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函数的积化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
高三文科数学知识点考点解析范文参考 3
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高三文科数学知识点考点解析范文参考 4
1、数形结合法,由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。高中数学数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
2、递推归纳法,通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
3、顺推破解法,利用高中数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
4、逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
以上的内容就是小编为各位介绍的关于快速提升高中数学成绩的方法,数学这个科目并不是能一蹴而就的,所以需要学生们不断的做题,来磨练自己对于各类高中数学题型的做法。
高三文科数学知识点考点解析范文参考 5
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
高三文科数学常考知识点三
一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积。在周长一定的简单闭曲线的集合中,圆的面积。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高三文科数学常考知识点四
导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高三文科数学知识点考点解析范文参考_精选范文网




