科学故事汇总范文推荐
科学的突飞猛进最终归功于人类的智慧和创新。下面小编给大家介绍关于科学故事,方便大家学习。
科学故事汇总范文推荐 1
地震仪
早在公元132年,中国的科学家张衡就发明了地震仪,当时称为地动仪。据《后汉书》记载,张衡的地动仪“以精铜铸成,圆径八尺,盒盖隆起,形似酒樽”。仪器内部中间设有“都柱”(相当于一种倒立型的震摆),周围有“八直”(装置在摆的周围的八组机械装置),樽外接相应东、西、南、北和东南、东北、西南、西北八个方向而设置的八条口含小铜珠的龙,每个龙头下面都有一只赡蜍张口向上。一旦发生较强的地震,“都柱”因震动失去平衡而触动“八道”中的一道,使相应的龙口张开,小铜珠即落入赡蜍口中,观测者便知道地震发生的时间和方向。地动仪成功地记录了公元138年甘肃发生的一次强震。
张衡的这?重大发明一直受到中外学者的赞扬和钦佩,成为现代地震仪的先驱。张衡地动仪只能记录地震的初动方向,与近代地震仪比较,只能叫验震器。1700多年以后的1848年,意大利人契托利才制成水银验震器。在此基础上1855年意大利人帕尔米耶里发明了能记录地震强度及持续时间的仪器:一条U形玻璃管,地震对管内水银产生震动,水银面有浮标与笔连接,可在转筒表面的纸上画出标记。
1883年在日本工作的英国地震学家米尔恩等人制成了摆式地震仪。方法是把一枚坠子(摆)挂在长约1.5米的水平吊杆上,吊杆可像门一样自由横转,地面移动时坠子由于惯性趋向静止,因而相对地面运动。
米尔恩的她雷仪后来发展成一种现代地震仪,由三台仪器组成,其中两台分别记录地壳东西和南北的水平运动,第三台记录上下运动(利用弹簧挂起坠子,地震时能上下运动)。
米尔恩之后很多科学家为地震仪器的发展作出贡献。1888-1889年间,伯希维茨制成了光记录式水平摆,第一次记录到远震(在德国波茨坦记录到日本1889年4月17日地震)。日本大森房吉制成水平摆式地震仪,采用机械杠杆放大,熏烟记录。德国维谢特制成倒立摆式大型水平及垂直向地震仪,提高了放大倍率。俄国伽利津制成了电流计记录式地震仪,将机械能转换为电能,更大地提高了地震仪的灵敏度。此后美国的班尼奥夫在1932年制成电磁型垂直向地震仪。
第二次世界大战后,地震仪的研究又有重要进展。运用电子放大方法大大提高了地震仪的放大倍率,从千倍级提高到数万倍,甚至数百万倍,观测频率范围大大展宽,遥测技术也有很大发展。1969年由“阿波罗11号”登月飞船宇航员安放了一台地震仪,通过地面遥感记录装置,得到了不少有关月球内部构造、月壳运动和组成成分的信息。
地震仪不仅是观测地震的仪器,它也是探测地球内部构造的重要手段。利用人工爆炸产生的震波传入地下可探测这个区域地下地层的构造。1923年美国利用此法发现大量油田。因此,地震仪又是勘探石油、天然气的不可缺少的工具。此外,地震仪还可侦察地下核爆炸。
科学故事汇总范文推荐 2
美国在世界上第一个汽车成为日常生活必需品日地方。1930年,巨大数量日机动车辆行驶在道路上。在空旷地区日广阔空间里,这是好事。但在城市里就有拥挤日问题。人们常常找不到一个停车位。
特别认识到这一点日人是报界人士卡尔顿·C·梅杰。他在《奥克拉荷马市新闻报》工作,同时也担任着当地“商人交通委员会”的会长。
梅杰认为要改变这一情形,比较公平的办法是让停车人为一定数量的停车时间付费。于是他便研制了停车场汽车停放计时器。
驾车人插入一枚硬币之后,可以转动旋钮。旋钮控制着一根指针,它会把旋钮转动以来已过了多少时间指示出来。当指针转回到它最初的位置时,停车时间也就到了。
汽车停放计时器是如今许多城市中一道熟悉日景观。它们可以让驾车人在街道上停一段时间,这样有助于控制交通流量。
梅杰最初的那些停车计时器都是一些不灵巧的装置,看上去像是放在柱子上的面包。在获得最初专利3年.
科学故事汇总范文推荐 3
使发明家入狱的望远镜
望远镜的发明在科学发展史上同样具有极为重大的意义,它揭开了近代科学的序幕。
经过漫长的中世纪,到了16世纪,由于哥白尼等惹?拇葱戮?瘢?囟?档日感碌慕??蒲У??恕5囟?凳沟萌死喙?ニ?械拇丛焖嘉?⒓壑倒勰钜约翱蒲Х椒ǖ榷嘉??恍隆?br> 然而,要证明地动说,就必须仔细地观测天体的运动和天体的情况。望远镜的重要性就在这里。
望远镜的发明也是从仍然的机会中获得的。据说17世纪初荷兰米德尔堡市有一个人常常把两个透镜放在一起眺望远方,这能使很远的东西看起来很近。可是他并不是科学家,也从来没有想过这是怎么一回事、其中有什么道理。但他的行为却促使伽利略为望远镜的发明作出了具有划时代意义的贡献。
1608年,伽利略对于地动说还只有一点模糊的认识,因此他决心更多地了解天体的情况。当枷利略从朋友的来信中得知了荷兰人的故事后,立刻集中精力研究起光学透镜来。他找来两根直径不同的空管子,将它们套在一起,然后在套管的一头嵌进一个凸透镜,另一头嵌进一个凹透镜。就这样,一个简易望远镜制成了,它最初只能放大3倍。经过了几个月的改进,第二年,伽利略制成了可放大32倍的望远镜。这就是所谓伽利略式望远镜,是一台折射望远镜。
伽利略马上用这个望远镜去观测天体。他用这个划时代的天文仪器观测到一些令人惊奇的现象:夺目的太阳上竟然有黑子;月亮上有的地方平原千里,有的地方却高山耸峙;木星有四个小卫星围绕它旋转,而且它们的位置是经常变化的,就像月亮围绕地球旋转一样。后来,伽利略还发现了金星的相,从而证明金星是绕太阳运行的,银河系是由许多的恒星组成的。于是伽利略坚定了对地动说的信念。这一系列发现轰动了欧洲。人们的评价是:哥伦布发现了新大陆,伽利略发现了新宇宙。
伽利略的发现沉重地打击了经院哲学教艺过去人们一直认为上天是完美无缺的,可是现在不但月亮有了斑点,连太阳也有了缺陷。伽利略一再邀请经院哲学家和神学家用望远镜观测天象,他们不但拒绝观测,反而诬蔑伽利略是骗子,望远镜是“魔鬼的发明”,并说是伽利略用符咒把新星星从天空中咒出来的。为了这件事,伽利略在给开普勒的信中气愤地说“对于这些人来讲,真理用不着到自然界中去寻找,只要从古人著作中就可以得到。”
望远镜把伽利略从力学实验室中吸引出来,天文观测使他成为了哥白尼的忠实信徒,他用从望远镜观测中得到的新发现和新知识热情地宣传和捍卫哥白尼的日心说,即太阳是中心,地球围着太阳转,而不是教会宣传的太阳围着地球转。因此跟教会发生了冲突。1633年,教会把年迈的伽利略召到罗马进行审判。枷利略被判有罪,关进了监狱。300多年之后,1979年11月,罗马教皇才在公开集舍上正式承认对伽利略的审判是不公正的,后来又提出要重新审理这个冤案。
伽利略的望远镜问世不久后的1611年,德国的天文学家约翰?开普勒便从光学原理上进行了分析。他认为应该在焦平面后加上一对凸透镜,这样得到放大的便会是倒像。开普勒只是在理论上做了探讨,自己没有亲自制做望远镜。
1640年,英国人根据开普勒的理论制做出了一台更加巨大的“天文望远镜”。加斯科因还把十字线放入望远镜中,所以后来的望远镜都采用了十字线。17世纪末,郝金斯、爱木斯顿也先后创制出了不同类型的组合目镜,这样才基本上完善了开普勒式望远镜的结构。
可是,人们常常发现:同样一台望远镜,观察同一个天体,观察的结果常常会有差异。英国的皇家天文学家内维尔?马斯基林有一个助手,他视察的结果和马斯基林总有一点细微的差异,马斯基林觉得这个助手不得力,就辞退了他。
马斯基林哪里知道,助手并非有错,而是他的天文望远镜本身有误差。后来,科学家称这种误差为象差和色差。象差就是从望远镜里看到的东西,中心部分是清晰的,但边缘部分就模糊。色差就是由于不同颜色的光进人望远镜后不能聚集于一点而造成的误差。
为了克服这些误差,科学家花了不少心血。17世纪中叶,有人制成了一台焦点达18米的望远镜,但是,也没有能完全克眼这些缺点。要看得远就要扩大口径,这就产生了色差。要减少色差,焦点距离就要相当长,裴力斯的望远镜达到了几十米。霍尔和多伦特把透镜重叠起来防止色差,发明了消色差透镜。1668年,牛顿发明了不使用透镜的反射式望远镜,完全解决了象差和色差的两大缺点,后来人们便把这种望远镜称为牛顿式反射望远镜。
此后,天文望远镜连同天文学一起一日千里地向前发展,各种大口径的天文望远镜相继出现。
1770年,天文学家威廉?赫舍尔成功地制成了当时世界上最大的两台望远镜:一台是焦巨6米、口径46厘米的天文望远镜;另一台更厉害,焦距12米,口径1.2米。这两台天文望远镜能观察极远的天体星球,甚至能透过雾观察天体。赫舍尔运用这两台天文望远镜系统地研究了恒星在空间的运动和分布,这是当时天文学的新领域。在研究过程中,他于1781年在上星之外发现了太阳系的另一颗行星??天王星。
1845年,爱尔兰贵族罗斯制造了一台更大的反射望远镜,它的口径达1.8米,这个望远镜筒就像一个大烟筒,整个观察室就像一个巨大的建筑物。由于它过分庞大,它的用途反而受到了限制。
从17世纪到19世纪的200年间,人们在使用望远镜时,利用改变物镜和吕钦间的距离来达到调焦的目的,所以那时的望远镜又被叫做外调焦式望远镜。
20世纪初,瑞士的测量仪器家威尔德又创制了内调焦式望远镜。他借助双凹透镜的前后移动达到调焦的目的。
40年代,原苏联的马克苏托夫又发明了折反射式望远镜,它具有镜身短、亮度大等优点。
目前世界上最大望远镜的物镜的有效孔径为6米,进光量比人眼高100万倍。
近几年来,光学望远镜已和电子技术结合为一体,出现了新生的光电倍增望远镜、射电天文望远镜。
1977年,美国用物镜有效孔径为5米的望远镜拍下了天王星光环的照片。同年我国天文工作者用60厘米反射望远镜发现天王星有一个主光环和四个小光环。
今天,望远镜的确成了天文学家探索宇宙奥妙的“千里眼”了。
现在的望远镜分为两类:第一类是使用消色差透镜的折射望远镜;第二类是反射式望远镜。现在世界上最大的消色差透镜折射望远镜是美国威斯康星州威廉斯湾的口径为102厘米的望远镜,它收集的光为人肉眼的40000倍,放大率达3000倍。从这台望远镜里观察38万公里远的月亮,就好像在128公里的近处看它一样。至于反射式望远镜则以美国加利福尼亚州帕洛马山的口径为508厘米的反射式透镜最为有名。
科学故事汇总范文推荐 4
不断改进的温度计
今天,我们已习惯了将冷热的变化用多少度这一量化概念来表示,因而无论谁对温度计都不陌生。然而,温度计究竟是怎样诞生的,那些温度又是怎样确定的呢?
18世纪以前,人们是无法准确表示气温的微小变化的。为了测定出如今普通温度计上的每一个刻度,发明家大约花了一千多年的时间。
最初,冷热是凭人们的感觉主观臆测的,因为那时没有温度计,大多数人说冷了,那就是冷了。
公元2世纪,一位叫加莱的希腊医生提出建议:为了看病的需要,最好分四个等级来表示人体的冷、热变化。加莱的建议??冷热的四个等级就成为没有温度计之前的温度标示了,这个不足为奇的温度准衡,在17世纪之前,一直被医学界采用。
当人们生活得还不十分精致的时候,粗略的说明勉强可以应付人们了解温度变化的需要,但是对于科学研究说却不同了,它需要进行准确的温度测量。在科学发展的道路上,第一步要做的工作是应该有一个计量冷热的方法,这就是为什么要发明温度计的原因。
1575年,意大利学者希罗的一本科学著作出版了。在这本书里,他描述了许多离奇的设备。后来,一些细心的学者研究了这本著作,他们指出,这些离奇的设备中有一台仪器能够证明物体受热会膨胀。
对物体热胀冷缩特性的认识直接导致了温度计的出现。
世界上第一支温度计是意大利著名的天文学家、物理学家伽利略在1593年制造的。他在一根一端附有玻璃球的管子里面装入带色的液体,然后把这根管子倒放在水里制成了最原始的温度计。这时如果在球外面用不同温度的物体与球靠近或接触,由于管内空气热胀冷缩,水面就会发生升降,这样从水柱的高低就能分辨出温度的变化。这种温度计叫空气温度计,它是现代温度计的鼻祖。空气温度计虽然很灵敏,但很不完善,容易受外界大气压变化的影响,从而使所测的温度不够准确。
后来,伽利略的学生继续研究,把管子制成密封的,并用酒精来代替空气。如此一来,测出的温度就准确多了。但是,因为酒精到摄氏78度就开始沸腾,所以它不能用来测量一般的高温。
1714年,荷兰阿姆斯特丹的一位名叫华仑海特的仪表商用水银代替了酒精,克服了上述的缺点。因为水银在摄氏350度才开始沸腾气化,在摄氏零下39度才开始凝固。所以水银温度计能测出较高或较低的温度。
不过,那时各种温度计所取刻度的含义很不统一,都是各取所需。比如,英国皇家学会实验部主任罗伯特?胡克把水的结冰温度作为一个起点;有的医生以正常血温为起点;而牛奶场的商人则以牛奶溶点为起点;还有的天文学家以巴黎天文台地下室的温度为温度计的起点,等等。有人统计了一下,这一阶段约有27种不同刻度的温度计,它们的确方便了确定温度起点的个人,却给更多的人带来了麻烦。为此,1740年,大家经协商后一致同意以水的冰点和沸点作为温度计标准刻度的依据。但应给这两个温度作怎样的标记呢?学者们又各抒己见了。
最初,发明水银温度计的华仑海特提出,把水在一个大气压下的冰点定为32度,沸点定为212度,中间划为180格,每一格定为一度,这就是华氏温度。用华氏温度计量出的温度度数,常用“F”来表示,例如华氏82度就记作“82摄氏度F”。
对普通人来说,华氏温度计使用不便。
1742年,瑞典天文学家摄尔西斯设计制造了一种温度计,他把一个大气压下的水的冰点定为零度,沸点定为100度,中间划分100格,每格定为一度,这就是我们今天最熟悉的摄氏温度。气象台预报气温变化时就是采用他制定的标准。用摄氏温度计量出的温度,常用“C”来表示,例如25摄氏度,记作“25℃”。
此后,国际上对温度标准还曾进行过多次修改,现在科研活动中多已采用1968年制定的国际实用温度。国际实用温度还用绝对温度来表示摄氏温度。绝对温度是英国物理学家开耳芬在1848年提出的,所以也叫开耳芬温度,简称开氏温度。它用“T”来表示,度数后面用符号“K”来表示。例如摄氏零度是水的冰点,用绝对温度来表示则是:T=273K。绝对温度可使热力学中很多定律的公式变换起来更简单,计算起来更方便。
今天人们普遍使用的温度计大多采用摄氏温度,它仍是利用液体的膨胀或收缩来测量温度变化的,液体被密封在一个玻璃泡里,玻璃泡又与一根细玻璃管相连。温度较高时,液体膨胀并在管内上升;温度较低时,液体收缩并在管内下降。液面最高处的管子上的刻度可以准确地显示当时温度是多少。
体温计是温度计中的一种,现在这种在小玻璃管上刻刻度,玻璃管下端装储存水银的小玻璃泡的现代体温计是由英国医生奥尔布特于1867年创制的。
科学故事汇总范文推荐 5
太空拖船??轨道器
轨道器是往来于航天站与空间基地之间的载人或无人飞船。它的主要用途是更换、修理航天站上的仪器设备;补给消耗品;从航天站取回资料和空间加工的产品等。由于它专门来往于鞲隹占湔荆??杂殖莆?疤?胀洗?薄?br> 轨道飞行器分为两种。一种是活动范围较小的,叫做轨道机动飞行器;另一种是在大范围内实行轨道转移的,称为轨道转移飞行器。
轨道机动飞行器携带的推进剂较少,一般在中心航天站周围几千米至几兆米范围内活动,往返于与航天站同一轨道平面内的卫星或平台之间。它通常是由一个遥控操纵的推进舱、专用功能舱和一些部件组成。专用功能舱和部件是根据任务需要临时附加到推进舱上的,它们可以是载人的增压舱,也可以是不载人的货舱。这种轨道器的飞行和操作由中心航天站或地面控制中心进行遥控;轨道器上的燃料和消耗品补给、维护和故障检修都可在太空的航天站进行。它起了航天站或空间实验室的交通船作用。
轨道转移飞行器带有较多的推进剂,能改变轨道平面的倾角,跑到远离航天站几十万米至36兆米的地球同步轨道或者更远的深空,为其他轨道上的卫星或航天器服务。它起到了太空空间的交通运载工具的作用。
随着航天事业的发展,轨道器是从近地轨道至中、高轨道的不可缺少的运输船,它可以与航天飞机或空天飞机组成太空接力运输,大大扩大了人在空间的活动能力。
科学故事汇总范文推荐_精选范文网




