初二数学知识点归纳参考大全
相关文章
学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
初二数学知识点归纳参考大全 1
一.概念:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。
二.基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
三计算法则:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
四.分式乘方要把分子、分母分别乘方。
a^-n=1/a^n(a≠0)这就是说,a^-n(a≠0)是a^n的倒数。
五.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
第十七章反比例函数
一.概念形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverseproportionalfunction)。
二.性质:反比例函数的图像属于双曲线(hyperbola)。
当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章勾股定理
一.概念勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2
勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
二.命题:经过证明被确认正确的命题叫做定理(theorem)。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章四边形
一.平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形。
二.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
初二数学知识点归纳参考大全 2
【概率初步】
23.1确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性
23.3时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件A的概率我们记作P(A);对于随机事件A,可知0
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n
6.列举法、树状图、列表
23.4概率计算举例
初二数学知识点归纳参考大全 3
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二数学知识点归纳参考大全 4
证明
一、对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题.每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例.
二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.
三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.
四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据.如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.
常考知识点:1、三角形的内角和定理,及三角形外角定理.2两直线平行的性质及判定.命题及其条件和结论,真假命题的定义.
初二数学知识点归纳参考大全 5
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上。
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).。
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
理解:已知等腰三角形的一线就可以推知另两线。
一个三角形的两个相等的角所对的边也相等。(等角对等边)
等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
性质:等边三角形的三个内角都相等,都等于60度;
判定:三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
1、直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
2、在三角形中,大角对大边,大边对大角。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
6 轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系
4.轴对称与轴对称图形的性质
① 关于某直线对称的两个图形是全等形。
② 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③ 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤ 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
7 线段的垂直平分线
定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
性质:线段垂直平分线上的点与这条线段的两个端点的距离相等。
判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上。
8 用坐标表示轴对称小结
1、在平面直角坐标系中
①关于x轴对称的点横坐标相等,纵坐标互为相反数;
②关于y轴对称的点横坐标互为相反数,纵坐标相等;
③关于原点对称的点横坐标和纵坐标互为相反数;
④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;
⑤关于与直线X=C或Y=C对称的坐标
2、点(x, y)关于x轴对称的点的坐标为(x, -y)
点(x, y)关于y轴对称的点的坐标为(-x, y)
3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
初二数学知识点归纳参考大全_精选范文网




