首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二数学知识点参考合集

发布时间: 浏览量:0

在我们平凡无奇的学生时代,大家都没少背知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。下面小编为大家带来高二必修二数学知识点总结,希望大家喜欢!

高二数学知识点参考合集 1

一、化学实验安全

1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。

(2)烫伤宜找医生处理。

(3)浓酸撒在实验台上,先用Na2CO3(或NaHCO3)中和,后用水冲擦干净。浓酸沾在皮肤上,宜先用干抹布拭去,再用水冲净。浓酸溅在眼中应先用稀NaHCO3溶液淋洗,然后请医生处理。

(4)浓碱撒在实验台上,先用稀醋酸中和,然后用水冲擦干净。浓碱沾在皮肤上,宜先用大量水冲洗,再涂上硼酸溶液。浓碱溅在眼中,用水洗净后再用硼酸溶液淋洗。

(5)钠、磷等失火宜用沙土扑盖。

(6)酒精及其他易燃有机物小面积失火,应迅速用湿抹布扑盖。

二、混合物的分离和提纯

分离和提纯的方法分离的物质应注意的事项应用举例

过滤用于固液混合的分离一贴、二低、三靠如粗盐的提纯

蒸馏提纯或分离沸点不同的液体混合物防止液体暴沸,温度计水银球的位置,如石油的蒸馏中冷凝管中水的流向如石油的蒸馏

萃取利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂用四氯化碳萃取溴水里的溴、碘

分液分离互不相溶的液体打开上端活塞或使活塞上的凹槽与漏斗上的水孔,使漏斗内外空气相通。打开活塞,使下层液体慢慢流出,及时关闭活塞,上层液体由上端倒出如用四氯化碳萃取溴水里的溴、碘后再分液

蒸发和结晶用来分离和提纯几种可溶性固体的混合物加热蒸发皿使溶液蒸发时,要用玻璃棒不断搅动溶液;当蒸发皿中出现较多的固体时,即停止加热分离NaCl和KNO3混合物

三、离子检验

离子所加试剂现象离子方程式

Cl-AgNO3、稀HNO3产生白色沉淀Cl-+Ag+=AgCl↓

O42-稀HCl、BaCl2白色沉淀SO42-+Ba2+=BaSO4↓

四、除杂

注意事项:为了使杂质除尽,加入的试剂不能是“适量”,而应是“过量”;但过量的试剂必须在后续操作中便于除去。

五、物质的量的单位――摩尔

1、物质的量(n)是表示含有一定数目粒子的集体的物理量。

2、摩尔(mol):把含有6、02×1023个粒子的任何粒子集体计量为1摩尔。

3、阿伏加德罗常数:把6、02X1023mol-1叫作阿伏加德罗常数。

4、物质的量=物质所含微粒数目/阿伏加德罗常数n=N/NA

5、摩尔质量(M)(1)定义:单位物质的量的物质所具有的质量叫摩尔质量、(2)单位:g/mol或g、、mol-1(3)数值:等于该粒子的相对原子质量或相对分子质量、

6、物质的量=物质的质量/摩尔质量(n=m/M)

六、气体摩尔体积

1、气体摩尔体积(Vm)(1)定义:单位物质的量的气体所占的体积叫做气体摩尔体积、(2)单位:L/mol

2、物质的量=气体的体积/气体摩尔体积n=V/Vm

3、标准状况下,Vm=22、4L/mol

七、物质的量在化学实验中的应用

1、物质的量浓度、

(1)定义:以单位体积溶液里所含溶质B的物质的量来表示溶液组成的物理量,叫做溶质B的物质的浓度。(2)单位:mol/L(3)物质的'量浓度=溶质的物质的量/溶液的体积CB=nB/V

2、一定物质的量浓度的配制

(1)基本原理:根据欲配制溶液的体积和溶质的物质的量浓度,用有关物质的量浓度计算的方法,求出所需溶质的质量或体积,在容器内将溶质用溶剂稀释为规定的体积,就得欲配制得溶液、

(2)主要操作

a、检验是否漏水、b、配制溶液1计算、2称量、3溶解、4转移、5洗涤、6定容、7摇匀8贮存溶液、注意事项:A选用与欲配制溶液体积相同的容量瓶、B使用前必须检查是否漏水、C不能在容量瓶内直接溶解、D溶解完的溶液等冷却至室温时再转移、E定容时,当液面离刻度线1―2cm时改用滴管,以平视法观察加水至液面最低处与刻度相切为止、

3、溶液稀释:C(浓溶液)?V(浓溶液)=C(稀溶液)V(稀溶液)

高二数学知识点参考合集 2

基本概念

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1:经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4:平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

高二年级数学知识点

空间两条直线只有三种位置关系:平行、相交、异面

按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp。空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法

若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为[0°,90°]

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高二数学知识点参考合集 3

一、导数的应用

1、用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2、生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益最大问题

3)面积、体积最(大)问题

二、推理与证明

1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

四、坐标平面上的直线

1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

五、圆锥曲线

1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

高二数学知识点参考合集 4

1.考虑:考虑是数学学习方法的核心。在学这门课中,考虑有重大意义。解数学题时,首先要观察、分析、考虑。考虑往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于考虑,经常开动脑筋的习惯,于是脑子就越用越灵,勤于考虑变成了善于考虑。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。

2.动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,我经常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自身对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。

3.培养发明精神:所谓发明,就是想出新方法,做出新成果,建立新理论。发明,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自身去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。

科学的学习方法在课内课外应注意些什么呢?

高二数学知识点参考合集 5

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

高二数学知识点参考合集_精选范文网

在我们平凡无奇的学生时代,大家都没少背知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。下面小编为大家带来高二必修二数学知识点总结,希望大家喜欢!高二必修二数学知识点总结空间两条
推荐度:
点击下载文档文档为doc格式