实用高二数学水平考试练习的知识点归纳
相关文章
在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是学习的重点。掌握知识点有助于大家更好的学 习。下面小编为大家带来数学数学高二知识点归纳,希望大家喜欢!
实用高二数学水平考试练习的知识点归纳 1
等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
面积公式
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
S=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:
S=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
实用高二数学水平考试练习的知识点归纳 2
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:
定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x),关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
实用高二数学水平考试练习的知识点归纳 3
考点一:求导公式。
例1.f(x)是f(x)13x2x1的导函数,则f(1)的值是3
考点二:导数的几何意义。
例2.已知函数yf(x)的图象在点M(1,f(1))处的切线方程是y
1x2,则f(1)f(1)2
,3)处的切线方程是例3.曲线yx32x24x2在点(1
点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
例4.已知曲线C:yx33x22x,直线l:ykx,且直线l与曲线C相切于点x0,y0x00,求直线l的方程及切点坐标。
点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。
考点四:函数的单调性。
例5.已知fxax3_1在R上是减函数,求a的取值范围。32
点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。
考点五:函数的极值。
例6.设函数f(x)2x33ax23bx8c在x1及x2时取得极值。
(1)求a、b的值;
(2)若对于任意的x[0,3],都有f(x)c2成立,求c的取值范围。
点评:本题考查利用导数求函数的极值。求可导函数fx的极值步骤:
①求导数f'x;
②求f'x0的根;③将f'x0的根在数轴上标出,得出单调区间,由f'x在各区间上取值的正负可确定并求出函数fx的极值。
实用高二数学水平考试练习的知识点归纳 4
极值的定义:
(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)
(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;
(2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x);
(2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
实用高二数学水平考试练习的知识点归纳 5
反正弦函数的导数:正弦函数y=sin_在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsin_,表示一个正弦值为_的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法
若F(_),G(_)互为反函数,
则:F'(_)_G'(_)=1
E.G.:y=arcsin__=siny
y'__'=1(arcsin_)'_(siny)'=1
y'=1/(siny)'=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-_^2)
其余依此类推
实用高二数学水平考试练习的知识点归纳_精选范文网




