首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二数学必修一知识点参考整理

发布时间: 浏览量:1

数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。今天小编在这给大家整理了高二数学必修5数列,接下来随着小编一起来看看吧!

高二数学必修一知识点参考整理 1

等比数列同步训练

一、选择题

1.数列{an}为等比数列的充要条件是(  )

A.an+1=anq(q为常数)

.a2n+1=anan+2≠0

C.an=a1qn-1(q为常数)

D.an+1=anan+2

解析:各项都为0的常数数列不是等比数列,A、C、D选项都有可能是0的常数列,故选B.

答案:B

2.已知等比数列{an}的公比q=-13,则a1+a3+a5+a7a2+a4+a6+a8等于(  )

A.-13          B.-3

C.13 D.3

解析:a1+a3+a5+a7a2+a4+a6+a8=a1+a3+a5+a7?a1+a3+a5+a7??1q=1q=-3,故选B.

答案:B

3.若a,b,c成等比数列,其中0

A.等比数列

.等差数列

C.每项的倒数成等差数列

D.第二项与第三项分别是第一项与第二项的n次幂

解析:∵a,b,c成等比数列,且0

答案:C

4.(2010?江西文)等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=(  )

A.(-2)n-1 B.-(-2)n-1

C.(-2)n D.-(-2)n

分析:本题主要考查等比数列的基本知识.

解析:a5=-8a2?a2q3=-8a2,∴q3=-8,∴q=-2.

又a5>a2,即a2?q3>a2,q3=-8.可得a2<0,∴a1>0.

∴a1=1,q=-2,∴an=(-2)n-1.故选A.

答案:A

5.在等比数列{an}中,已知a6?a7=6,a3+a10=5,则a28a21=(  )

A.23 B.32

C.23或32 D.732

解析:由已知及等比数列性质知

a3+a10=5,a3?a10=a6?a7=6.解得a3=2,a10=3或a3=3,a10=2.∴q7=a10a3=23或32,∴a28a21=q7=23或32.故选C.

答案:C

6.在等比数列{an}中,a5?a11=3,a3+a13=4,则a15a5=(  )

A.3 B.13

C.3或13 D.-3或-13

解析:在等比数列{an}中,∵a5?a11=a3?a13=3,a3+a13=4,∴a3=1,a13=3或a3=3,a13=1,∴a15a5=a13a3=3或13.故选C.

答案:C

7.(2010?重庆卷)在等比数列{an}中,a2010=8a2007,则公比q的值为(  )

A.2 B.3

C.4 D.8

分析:本题主要考查等比数列的通项公式.

解析:由a2010=8a2007,可得a2007?q3=8a2007,∴q3=8,∴q=2,故选A.

答案:A

8.数列{an}中, a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,那么a1,a3,a5(  )

A.成等比数列 B.成等差数列

C.每项的倒数成等差数列 D.每项的倒数成等比数列

解析:由题意可得

2a2=a1+a3,a23=a2a4,2a4=1a3+1a5?a2=a1+a32,①a4=a23a2,②2a4=1a3+1a5.③

将①代入②得a4=2a23a1+a3,再代入③得a1+a3a23=a5+a3a3a5,则a5a1+a3a5=a3a5+a23,即a23=a1a5,∴a1,a3,a5成等比数列,故选A.

答案:A

9.x是a、b的等差中项,x2是a2,-b2的等差中项,则a与b的关系是(  )

A.a=b=0 B.a=-b

C.a=3b D.a=-b或a=3b

解析:由已知得2x=a+b2x2=a2-b2 ①②故①2-②×2得a2-2ab-3b2=0,∴a=-b或a=3b.

答案:D

10.(2009?广东卷)已知等比数列{an}满足an>0,n=1,2,…,且a5?a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=(  )

A.n(2n-1) B.(n+1)2

C.n2 D.(n-1)2

解析:设等比数列{an}的首项为a1,公比为q,

∵a5?a2n-5=22n(n≥3),

∴a1q4?a1q2n-6=22n,即a21?q2n-2=22n?(a1?qn-1)2=22n?(an)2=(2n)2,

∵an>0,∴an=2n,∴a2n-1=22n-1,

∴log2a1+log2a3+…+log2a2n-1=log22+log223+…+log222n-1=1+3+…+(2n-1)=1+?2n-1?2?n=n2,故选C.

答案:C

高二数学必修一知识点参考整理 2

抛物线的性质:

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

(-b/2a,(4ac-b^2)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

焦半径:

焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè???÷?

2,0的距离|PF|=x0+p2.

求抛物线方程的方法:

(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.

(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).

高二数学必修一知识点参考整理 3

考点一:求导公式。

例1.f(_)是f(_)13_2_1的导函数,则f(1)的值是3

考点二:导数的几何意义。

例2.已知函数yf(_)的图象在点M(1,f(1))处的切线方程是y

1_2,则f(1)f(1)2

,3)处的切线方程是例3.曲线y_32_24_2在点(1

点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C:y_33_22_,直线l:yk_,且直线l与曲线C相切于点_0,y0_00,求直线l的方程及切点坐标。

点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知f_a_3__1在R上是减函数,求a的取值范围。32

点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6.设函数f(_)2_33a_23b_8c在_1及_2时取得极值。

(1)求a、b的值;

(2)若对于任意的_[0,3],都有f(_)c2成立,求c的取值范围。

点评:本题考查利用导数求函数的极值。求可导函数f_的极值步骤:

①求导数f'_;

②求f'_0的根;③将f'_0的根在数轴上标出,得出单调区间,由f'_在各区间上取值的正负可确定并求出函数f_的极值。

考点六:函数的最值。

例7.已知a为实数,f__24_a。求导数f'_;(2)若f'10,求f_在区间2,2上的值和最小值。

点评:本题考查可导函数最值的求法。求可导函数f_在区间a,b上的最值,要先求出函数f_在区间a,b上的极值,然后与fa和fb进行比较,从而得出函数的最小值。

考点七:导数的综合性问题。

例8.设函数f(_)a_3b_c(a0)为奇函数,其图象在点(1,f(1))处的切线与直线_6y70垂直,导函数

(1)求a,b,c的值;f'(_)的最小值为12。

(2)求函数f(_)的单调递增区间,并求函数f(_)在[1,3]上的值和最小值。

点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

高二数学必修一知识点参考整理 4

  有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学

高二数学必修一知识点参考整理 5

一定义

集合是高中数学中最原始的不定义的概念,只给出描述性的说明。某些确定的且不同的对象集在一起就成为集合。组成集合的对象叫做元素。

二集合的抽象表示形式

用大写字母A,B,C??表示集合;用小写字母a,b,c??表示元素。

三元素与集合的关系

有属于,不属于关系两种。元素a属于集合A,记作aA?;元素a不属于集合A,记作aA?。

四几种集合的命名

有限集:含有有限个元素的集合;无限集:含有无限个元素的集合;空集:不包含任何元素的集合叫做空集,用?表示;自然数集:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。

五集合的表示方法

(一)列举法:把元素一一列举在大括号内的表示方法,例如:{a,b,c}。注意:凡是以列举法形式出现的集合,往往考察元素的互异性。

(二)描述法:有以下两种描述方式

1.代号描述:【例】方程2x3x+2=0?的所有解组成的集合,可表示为{x|x2-3x+2=0}。x是集合中元素的代号,竖线也可以写成冒号或者分号,竖线后面的式子的作用是描述集合中的元素符合的条件。

2.文字描述:将说明元素性质的一句话写在大括号内。【例】{大于2小于5的整数};描述法表示的集合一旦出现,首先需要分析元素的意义,也就说要判断元素到底是什么。

(三)韦恩图法:用图形表示集合定义了两个集合之间的所有关系。子集有两种极限情况:

(1)当A成为空集时,A仍为B的子集;

(2)当A和B相等时,A仍为B的子集。真子集:如果所有属于A的元素都属于B,而且B中至少有一个元素不属于A,那么A叫做B的真子集,记作AB?或。真子集也是子集,和子集的区别之处在于。

对于同一个集合,其真子集的个数比子集少一个。

(1)求子集或真子集的个数,由n各元素组成的集合,有2n个子集,有2n-1个真子集;

(2)空集的考查:凡是提到一个集合是另一个集合的子集,作为子集的集合首先可以是空集,的等价形式主要有。

TAG标签: 数学 知识点

高二数学必修一知识点参考整理_精选范文网

数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。今天小编在这给大家整理了高二数学必修5数列,接下来随着小编一起来看看吧!高二数学必修5数列高二数学必修5的数列要怎么学第一:掌握两个重要的数列:等差数列和和等比数列,重点掌握它们的性质、通项公式的求法以及n项和的求法(公式)。这两个数列是常考的题型。必须要熟练掌握!第二:学会常见的数列通项公式an的求法(主要有:
推荐度:
点击下载文档文档为doc格式