首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学

实用高考数学必备知识点最新整理

发布时间: 浏览量:7

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的想选择。下面是小编给大家带来的高三数学必备知识点归纳,以供大家参考!

实用高考数学必备知识点最新整理 1

数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

顺推.法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。 例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户.为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为()

A.5%B.10%C.15%D.20%

解析:设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α

解出0.1≤χ≤0.15,故应选B.

实用高考数学必备知识点最新整理 2

1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。

2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。

3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。

4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。

5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。

6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。

7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。

8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

9.从实际问题中抽象出二元一次不等式(组)的步骤是:

(1)根据题意,设出变量;

(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;

(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。

实用高考数学必备知识点最新整理 3

关于核心的说法

1.绿色消费的核心是——可持续性消费。

2.科学发展观的本质和核心是——以人为本。

3.“三个代表”思想的核心是——坚持党的先进性。

4.中华民族精神的核心是——爱国主义。

5.唯物辩证法的实质和核心是——矛盾的观点(也是唯物辩证法的根本观点)

关于(产生)生存和发展的说法:

人类社会产生和存在(或说存在和发展)的基础——物质资料的生产方式

人类社会生存和发展的基础——文化多样性关于关键的说法:

监督政府权力的行使的关键是——建立健全制约和监督机制,这个机制(一靠民主,二靠法制)

人们解决矛盾(问题)的关键——具体问题具体分析。

关于属性的说法:

1.商品的两个基本属性(又叫商品的二因素或二重性)——使用价值和价值。(使用价值可说是商品的自然属性,价值还可以说是商品的本质属性、共有属性、特有属性、社会属性)

2.矛盾的两个基本属性(又叫二重性)——同一性和斗争性。

3.物质的根本属性是——运动(区别物质的唯一特性是客观实在性)。

关于特点的说法:

我国社会主义民主的特点——具有广泛性和真实性。

中国社会主义民主政治最鲜明的特点——实行人民代表大会制度

我国古代科学技术的特点——注重实际运用,具有实用性和整体性。

关于前提、基础的说法:

实行对外开放,发展对外经济关系的基础和前提——必须始终坚持独立自主、自力更生的原则。

决策机关进行科学决策的重要前提是——拓宽民意反映渠道。

公民参与民主决策的前提和基础是——公民享有对涉及公众利益的决策的知情权。

我国政党制度的前提是——中国共产党是执政党。

文化创新的重要基础——文化多样性。(也是世界文化的基本特征)

人们认识事物的基础——具体问题具体分析

关于标志的说法:

社会主义市场经济的基本标志——坚持公有制的主体地位

衡量一国经济发展水平的重要标志——国内生产总值即GDP。

公民参与国家管理的基础和标志——选举权和被选举权(也可以说是公民基本的民主权利)

区别有权威与无权威政府的根本标志是——政府的管理是否被人民自觉地认可和服从。

一个国家和民族历史文化成就的重要标志是——文化遗产。

一个民族文明程度的重要标志之一——科学技术。(中国古代的科技成就长期处于世界前列。)

传媒真正开始面向大众传递信息的标志——印刷媒体的推广。

展现中国传统文化的重要标志——传统建筑(也被称为凝固的艺术)

人类进入文明时代的标志——文字的发明。(区别:汉字是中华文明的重要标识,汉字和史书典籍是中华文化源远流长的见证。)

实用高考数学必备知识点最新整理 4

1、算法初步:高考必考内容,5分(选择或填空)

2、统计:

3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

实用高考数学必备知识点最新整理 5

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

实用高考数学必备知识点最新整理_精选范文网

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的想选择。下面是小编给大家带来的高三数学必备知识点归纳,以供大家参考!高三数学必
推荐度:
点击下载文档文档为doc格式