首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学

最常见高三数学考点知识点范文推荐

发布时间: 浏览量:1

奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。接下来是小编为大家整理的高三数学知识点,希望大家喜欢!

最常见高三数学考点知识点范文推荐 1

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

最常见高三数学考点知识点范文推荐 2

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

最常见高三数学考点知识点范文推荐 3

1.椭圆的标准方程共分两种情况:

当焦点在x轴时,椭圆的标准方程是:x?/a?+y?/b?=1,(a>b>0);

当焦点在y轴时,椭圆的标准方程是:y?/a?+x?/b?=1,(a>b>0);

2.设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。

3.椭圆的方程几何性质

X,Y的范围

当焦点在X轴时-a≤x≤a,-b≤y≤b

当焦点在Y轴时-b≤x≤b,-a≤y≤a

对称性

不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

顶点:

焦点在X轴时:长轴顶点:(-a,0),(a,0)

短轴顶点:(0,b),(0,-b)

焦点在Y轴时:长轴顶点:(0,-a),(0,a)

短轴顶点:(b,0),(-b,0)

注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻。

焦点:

当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)

当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)

4.S=πab((其中a,b分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或S=πAB/4(其中A,B分别是椭圆的长轴,短轴的长)。

5.圆和椭圆之间的关系:椭圆包括圆,圆是特殊的椭圆。

直线、圆的位置关系知识点总结

1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.

①dR,直线和圆相离.

2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

切线的性质

⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线.

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

最常见高三数学考点知识点范文推荐 4

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

a-边长,S=6a2,V=a3

4、长方体

a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱

-底面积h-高V=Sh

6、棱锥

-底面积h-高V=Sh/3

7、棱台

1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

1-上底面积,S2-下底面积,S0-中截面积

h-高,V=h(S1+S2+4S0)/6

9、圆柱

r-底半径,h-高,C—底面周长

底—底面积,S侧—侧面积,S表—表面积C=2πr

底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、直圆锥

r-底半径h-高V=πr^2h/3

12、圆台

r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

13、球

r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台

r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体

R-环体半径D-环体直径r-环体截面半径d-环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D-桶腹直径d-桶底直径h-桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

最常见高三数学考点知识点范文推荐 5

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

TAG标签: 数学 考点

最常见高三数学考点知识点范文推荐_精选范文网

奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。接下来是小编为大家整理的高三
推荐度:
点击下载文档文档为doc格式