首页 > 学习方法 > 各学科学习方法 > 数学学习方法

高中必修五数学知识点参考总结

发布时间: 浏览量:0

学习知识要善于思考,思考,再思考。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面小编为大家带来高中必修五数学知识点笔记整理,希望大家喜欢!

高中必修五数学知识点参考总结 1

⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数

⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数高一数学知识点

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

高中必修五数学知识点参考总结 2

生活中的轴对称

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

6、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

8、等腰三角形性质:

①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。

9、①“等角对等边”∵∠B=∠C∴AB=AC

②“等边对等角”∵AB=AC∴∠B=∠C

10、角平分线性质:

角平分线上的点到角两边的距离相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。

∵OC垂直平分AB∴AC=BC

12、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。

2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。

13、镜面对称

1.当物体正对镜面摆放时,镜面会改变它的左右方向;

2.当垂直于镜面摆放时,镜面会改变它的上下方向;

3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;

学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:

(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;

(3)可以把数字左右颠倒,或做简单的轴对称图形;

(4)可以看像的背面;(5)根据前面的结论在头脑中想象。

高中必修五数学知识点参考总结 3

总复习

1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。

5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

高中必修五数学知识点参考总结 4

图形的相似

1、成比例线段

①线段的比

如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成

四条线段a、b、c、d中,如果a与b的比等于c与d的比,即

那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

②注意点:

a:b=k,说明a是b的k倍

由于线段 a、b的长度都是正数,所以k是正数

比与所选线段的长度单位无关,求出时两条线段的长度单位要一致

除了a=b之外,a:b≠b:a

比例的基本性质:若

则ad=bc; 若ad=bc, 则

2、平行线分线段成比例

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则

3. 黄金分割

如图1,点C把线段AB分成两条线段AC和BC,如果

那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

黄金分割点是最优美、最令人赏心悦目的点.

4.相似多边形

① 含义:

一般地,形状相同的图形称为相似图形.

对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

②注意点:

在相似多边形中,最为简单的就是相似三角形.

对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

全等三角形是相似三角的特例,这时相似比等于1.

注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比.

相似三角形面积的比等于相似比的平方.

相似多边形的周长等于相似比;面积比等于相似比的平方.

5、探索三角形相似的条件

①相似三角形的判定方法:

②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

③相似三角形的判定定理的证明

④利用相似三角形测高

⑤相似三角形的性质

⑥图形的位似

高中必修五数学知识点参考总结 5

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

高中必修五数学知识点参考总结_精选范文网

学习知识要善于思考,思考,再思考。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面小编为大家带来高中必修五数学知识点笔记整理,希望大家喜
推荐度:
点击下载文档文档为doc格式