小学数学知识点完整版大全模板
相关文章
从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面小编为大家带来初中数学知识点汇总电子版,希望大家喜欢!
小学数学知识点完整版大全模板 1
1.目标要明。一节复习课必须有清楚明晰的教学目标,才能把握复习的主攻方向。具体说来,一是复习的内容要明确,诸如基本概念、基本性质、基本技能等要求向学生表达清楚。二是目标的层次要明确。对复习的知识给出知道、理解、掌握、应用、会、比较熟练、熟练等不同层次的要求。三是复习要求要明确。对重点、难点、关键、疑点及易混淆处让学生高度重视,学有重点,思有目标。
2.这里要精。复习中选择一些恰当、新视觉、最能体现复习内容本质特征、唤起学生思维灵感而引起思维共鸣的例题而施教,达到温故知新。择例题是要做到“三性”。一是准确性,符合新课标要求,谨防过深或过偏而加重学生过重的课业负担;二是典范性,体现重要知识点,其有“范例”作用;三是综合性,体现各类知识的横向联系,培养学生综合解题能力。一般而言,复习时应精选学生平时漏缺的知识,精选学生易混淆的知识,精选带有关键性、规律性的知识。
3.方法要巧。利用一切有效手段充分调动学生复习的主动性、创造性,使得学生学得轻松、理解得透、掌握的牢。教师指导复习时要做到四点:第一是定调。给出复习“导弹单”,学生依“纲”复习,掌握基本的知识和技能。第二是给法。对复习方法给予指导。善于抓住重点组织复习。第三是树靶。对复习中的疑难问题展开辩论,审视真伪。第四是立样。对辩论的结果给出是与否的肯定回答,澄清模糊认识,树立正确观点。
4.训练要活。复习中配以灵活多变的训练,能达到巩固知识、理解规律、强化记忆、灵活应用多变的训练,创造新的思维意境。其次,在训练和综合训练等灵活方式。
小学数学知识点完整版大全模板 2
一、百分数的意义
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
小学数学知识点完整版大全模板 3
(一)导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义
(二)导数第二定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义
(三)导函数与导数
如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间
学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
小学数学知识点完整版大全模板 4
1、课前:利用预备铃前后的时间,复习上节课学习的知识.(争取2分钟左右时间完成)
2、课上:
(1) 跟着老师学习课本知识和《优化设计》的典型例题 (能清楚当天所学知识的考题类型及其解法. 特别要学习反思中的内容,这里常常是某类题型的解题方法总结);积极参与老师组织的教学活动,与老师互动(好像与老师“聊天”一样)
(2) 快速记笔记.(书本有的不记,要记老师补充的知识、补充的题型及解法、老师讲评的而自己又不会的习题
3、课后:
(1) 完成《优化设计》的基础知识梳理.(相当于把当天学习的 知识复习一遍. 要凭自己的记忆完成,不会的再回到课本弄懂 千万不要抄书本或抄答案,否则收效胜微或徒劳)
(2) 看看《优化设计》的重点难点突破.(能对重点、难点知识深入理解)
(3) 做好当天老师布置的课本作业. (能巩固当天所学知识)
(4) 完成《优化设计》的随堂练习巩固与优化作业提高.(独立完成可熟练掌握当天所学知识,提升解题能力)
(5) 预习下节课将要学习的内容,要达成两项目标:(争取5分钟左右时间完成)
① 知道下节课要学习哪些知识,对每个知识点要进行三问. (即问:某某知识,是什么?为什么?怎么用?)
② 知道自己预习的效果:预习的内容学到了什么?(知识、技能、方法、思想)哪些知识自己学懂了?哪些知识自己还不懂?(不懂的地方就是下节课重点听课和学习的地方)
小学数学知识点完整版大全模板 5
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N。
在自然数集内排除0的集合叫做正整数集,记作N+或NX。
整数全体构成的集合,叫做整数集,记作Z。
有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)
1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。
无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。
2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
小学数学知识点完整版大全模板_精选范文网




