高中数学选择题答题方法5篇
相关文章
上过高中的人都知道,高中数学是一个令大部分人都很头疼的学科,难,很难,非常难,要想成功及格都很困难,那么接下来给大家分享一些关于高中数学选择题答题方法,希望对大家有所帮助。
高中数学选择题答题方法1
1、三角变换与三角函数的性质问题
解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h;④结合性质求解。
答题步骤:
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
2、解三角形问题
解题方法:
(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
答题步骤:
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
3、数列的通项、求和问题
解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
答题步骤:
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
4、离散型随机变量的均值与方差
解题思路:
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
答题步骤:
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
5、圆锥曲线中的范围问题
解题思路;①设方程;②解系数;③得结论。
答题步骤:
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
6、解析几何中的探索性问题
解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。
答题步骤:
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。
高中数学选择题答题方法2
一、点关于已知点或已知直线对称点问题
1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),
x′=2a-x
由中点坐标公式可得:y′=2b-y
2、点P(x,y)关于直线L:Ax+By+C=O的对称点为
x′=x-(Ax+By+C)
P′(x′,y′)则
y′=y-(AX+BY+C)
事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C
解此方程组可得结论。
(-)=-1(B≠0)
特别地,点P(x,y)关于
1、x轴和y轴的对称点分别为(x,-y)和(-x,y)
2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)
3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)
例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。
解:如图,由公式可求得A关于直线x-2y=0的对称点
A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0
`C(0,)
`直线BC的方程为:5x-6y+25=0
二、曲线关于已知点或已知直线的对称曲线问题
求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。
1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0
2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0
特别地,曲线F(x,y)=0关于
(1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0
(2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0
(3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0
除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f(x)|的图象。
例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:
1)写出曲线C1的方程
2)证明曲线C与C1关于点A(,)对称。
(1)解知C1的方程为y=(x-t)3-(x-t)+s
(2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:
s-b1=(t-a1)3-(t-a1)
`b1=(a1-t)3-(a1-t)+s
`B1(a1,b1)满足C1的方程
`B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上
`曲线C和C1关于a对称
我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)
`y=(x-t)3-(x-t)+s
此即为C1的方程,`C关于A的对称曲线即为C1。
三、曲线本身的对称问题
曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。
例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。
例3方程xy2-x2y=2x所表示的曲线:
A、关于y轴对称B、关于直线x+y=0对称
C、关于原点对称D、关于直线x-y=0对称
解:在方程中以-x换x,同时以-y换y得
(-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变
`曲线关于原点对称。
高中数学选择题答题方法3
1.函数与导数:2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。
2.三角函数与平面向量:小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.
3.数列:2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推为主.
4.解析几何:2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.
5.立体几何:2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。
6.概率与统计:2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.
7.不等式:小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如集合、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。
8.算法与推理:程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理题偶尔会出现一个。
高中数学选择题答题方法4
做选择题应该要讲究速度和质量,每张卷子的选择题中都含有两三道难题,遇到时我们不能慌张,多读题,理解题意,遇到的是几何题那就需要用铅笔在图上面做标记,如果实在做不起来,应该跳过到下一题,否则浪费时间,继续往后做。
试卷中一般填空题是五题,一共20分,其中有一题是拔高题,喜欢出那种选择上面四个中正确选项,这种题目中考是百分之百的有,所以要结合题目和图,想想是否要做辅助线等,千万不能投机取巧,认真对待每一题,不会写就要跳过,写下一题,节省时间。
高中数学选择题答题方法5
数量原则
理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3
实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个
三不相同原则
即连续三个问题不会连续出现相同答案
答案排列不会出现ABCDE的英文字母排列顺序
中庸之道
即数值优先选择“中间量”选项,选项优先考虑BCD。在同一道题中优先考虑数值的“中间量”后考虑选项BCD。(如E选项对应数值为中间量时,优先从数值入手考虑)
出现诸如“以上结果都不对”的选项不予考虑
由提干给定信息入手,通过选项特征排除错误选项
选项基本特征如下:
单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值)
正值与负值(考前冲刺P12/25题根据提干排除负值)
有零与无零
区间的开与闭(看极端情况能否取等号)
正无穷与负无穷(通过极限考虑)
整数与小数(分数)
质数与合数
大于与小于
整除与不能整除
带符号与不带符号(例如根号、平方号等等)
少数服从多数原则
即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题
一般情况下选项出现1、2、0、-1、-2的情况比较多
前后无定位,连续几道题均不会都需猜蒙答案的情况
观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。
高中数学选择题答题方法5篇_精选范文网




