首页 > 学习方法 > 各学科学习方法 > 数学学习方法

初中数学需要掌握的解题方法和思路经典整理

发布时间: 浏览量:0

  高三数学期中考试立体几何题目是高考数学核心考点,一对一辅导它考察了考生的立体空间思维以及推理运用能力,那么,有什么技巧呢?小编整理了相关资料,希望能帮助到您。

初中数学需要掌握的解题方法和思路经典整理 1

一、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空 题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。

二、特殊化法

当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的 恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。

三、数形结合法

quot;数缺形时少直观,形缺数时难入微。"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关 系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。对于一 些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

四、等价转化法

通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。

初中数学需要掌握的解题方法和思路经典整理 2

1、重视构建知识网络——宏观把握数学框架

要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。

2、重视强化题组训练——感悟数学思想方法

一定要勤做练习题,并养成解题后反思的习惯:反思知识点和解题技巧,反思多种解法的优劣和联系。做到举一反三、触类旁通。逐步学会观察、分析、归纳、联想等方法,主动地发现问题和提出问题。

3、重视中考动向要求——勤练解题规范速度

把握好目前的中考动向,特别是近年来中考越来越注重解题过程的规范和解答过程的完整。京翰教育特别指出,有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多,不要会做而不得分。

4、重视掌握应试规律——提高考试成绩效率

有关专家曾对高考落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果被曝他们的最大区别不是智力,而是应试中的心理状态。事实上,应试中的心态对应试的成功将日趋重要。具有良好心理状态的考生,可以较好地运筹时间,减少应试中的心理损伤。

5、重视建立“病例档案”——做到万无一失

准备一本数学学习错题本,把平时犯的错误记下来,并且经常地拿出来看看,这对于积累解题经验、总结解题思路、掌握学习方法有极大的帮助。

初中数学需要掌握的解题方法和思路经典整理 3

  解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。

  解答题涉及的知识点多、覆盖面广,综合性强、跨度大、解法灵活,涉及数式计算、函数图像及性质的计算应用等。

  解题的关键是从题目的语言叙述中获取「符号信息」,从题目的图像、图形中获取「形象信息」,灵活应用定义、公式、性质、定理进行计算和推理。运用各种数学思想,构建各种数学模型解决问题。

初中数学需要掌握的解题方法和思路经典整理 4

创立学科功能的方法

如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、向量方法等。在具体的解题中,具有统帅全局的作用。

一般思维规律的方法

如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等。在具体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求。

论证演算的方法

这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。

初中数学需要掌握的解题方法和思路经典整理 5

构思解题方法

联想即有一种心理过程而引起另一种与之相连的心理过程的现象。 知识的掌握过程中的联想即以所形成的问题的表征为提取线索,去激活脑中有关的知识结构。联想是使抽象化或概括化的知识得以具体化的必要环节,解决问题总是依赖过去的知识经验。 比如在解决数学问题时,根据所形成的问题表征,去激活回忆与该问题有关的知识方法、公式、定理、定义、学过的例题、解过的题目等,并考虑能否利用它们的结果或者方法,克服在引进适当的辅助元素后加以利用,能否找出与该问题有关的一个特殊的问题或一个一般的问题或一个类似的问题。 如果能够从所给问题中辨认出符合问题目标的某个熟悉的模式,那么就能提出相应的解题设想,进而解决问题。

在解题过程中,联想活动的进行将因问题的复杂程度和学生对所学知识的掌握程度的不同,而有扩展与压缩、直接与间接。意识到知识的重现与意识到知识的重现的分别,有些情况下,学生不能联想,难以激活原来的知识结构,或者即使联想,但联想的内容错误,常受到与其相近的比较巩固的旧的知识的干扰。 其主要原因是领会水平较低或者领会错误,或原有的知识不巩固,或缺乏联想的技能。 为产生准确而灵活的联想,除了要保证知识的领会和巩固外,还要有目的的进行联想技能的训练。

解析解题途径

解析即分析事物的矛盾,分析已知和未知双方的内部联系,寻找解决矛盾的条件和方法,数学解题中的解析即统一的分析问题中各部分的内在联系,分析问题的结构。 将问题结构的各部分与原有知识结构的有关部分进行匹配,解析的结果往往表现为提出解决当前问题的各种设想、制定具体的计划与步骤。探索解决问题的方法有多种多样,比如在解决数学问题时,可以通过分析、综合等基本的思维活动,并依据已有的知识,将问题的条件或结论作适当的变更和转换。

使之更易于利用某种原理或者概念来解决问题;也可以通过变换,使眼前的问题特殊化或者一般化;还可以利用适当的辅助问题。在探索解题方法的过程中,有时需要不断的多次变更问题,综合应用各种方法。解析是具体化过程的核心环节,决定着具体化的水平。 为此,在教学中应对解析技能的培养给予高度的重视。 教师可以遵循心智技能形成和培训的规律,来传授和提高学生的解析能力。

TAG标签: 数学 解题

初中数学需要掌握的解题方法和思路经典整理_精选范文网

高三数学期中考试立体几何题目是高考数学核心考点,一对一辅导它考察了考生的立体空间思维以及推理运用能力,那么,有什么技巧呢?小编整理了相关资料,希望能帮助到您。 1.立体几何核心考点平行、垂直位置关系的论证的策略: (1)由已知
推荐度:
点击下载文档文档为doc格式