高考理综答题技巧方法大全推荐
相关文章
高中物理对很多学生来书都是一个难关,可能有的人从初中开始物理就不好,一直没找到方法,其实物理只要学进去了,也很简单,入门了、开窍了,你的物理成绩提高会非常快。下面给大家分享一些关于如何学好物理的窍门方法,希望对大家有所帮助。
高考理综答题技巧方法大全推荐 1
一、分子运动论
1.物质是由大量分子组成的

2.分子永不停息地做无规则热运动
(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。
(2)布朗运动
布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。
(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。
(4)布朗运动产生的原因
大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。
(5)影响布朗运动激烈程度的因素
固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。
(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在10-6m,这种微粒肉眼是看不到的,必须借助于显微镜。
3.分子间存在着相互作用力
(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。
分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。
(2)分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。
(3)分子力F和距离r的关系如下图

4.物体的内能
(1)做热运动的分子具有的动能叫分子动能。温度是物体分子热运动的平均动能的标志。
(2)由分子间相对位置决定的势能叫分子势能。分子力做正功时分子势能减小;分子力作负功时分子势能增大。当r=r0即分子处于平衡位置时分子势能最小。不论r从r0增大还是减小,分子势能都将增大。如果以分子间距离为无穷远时分子势能为零,则分子势能随分子间距离而变的图象如上图。
(3)物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能。物体的内能跟物体的温度和体积及物质的量都有关系,定质量的理想气体的内能只跟温度有关。
(4)内能与机械能:运动形式不同,内能对应分子的热运动,机械能对于物体的机械运动。物体的内能和机械能在一定条件下可以相互转化。
二、固体
1.晶体和非晶体
(1)在外形上,晶体具有确定的几何形状,而非晶体则没有。
(2)在物理性质上,晶体具有各向异性,而非晶体则是各向同性的。
(3)晶体具有确定的熔点,而非晶体没有确定的熔点。
(4)晶体和非晶体并不是绝对的,它们在一定条件下可以相互转化。例如把晶体硫加热熔化(温度不超过300℃)后再倒进冷水中,会变成柔软的非晶体硫,再过一段时间又会转化为晶体硫。
2.多晶体和单晶体
单个的晶体颗粒是单晶体,由单晶体杂乱无章地组合在一起是多晶体。多晶体具有各向同性。
3.晶体的各向异性及其微观解释
在物理性质上,晶体具有各向异性,而非晶体则是各向同性的。通常所说的物理性质包括弹性、硬度、导热性能、导电性能、光的折射性能等。晶体的各向异性是指晶体在不同方向上物理性质不同,也就是沿不同方向去测试晶体的物理性能时测量结果不同。需要注意的是,晶体具有各向异性,并不是说每一种晶体都能在各物理性质上都表现出各向异性。晶体内部结构的有规则性,在不同方向上物质微粒的排列情况不同导致晶体具有各向异性。
三、液体
1.液体的微观结构及物理特性
(1)从宏观看
因为液体介于气体和固体之间,所以液体既像固体具有一定的体积,不易压缩,又像气体没有形状,具有流动性。
(2)从微观看有如下特点
①液体分子密集在一起,具有体积不易压缩;
②分子间距接近固体分子,相互作用力很大;
③液体分子在很小的区域内有规则排列,此区域是暂时形成的,边界和大小随时改变,并且杂乱无章排列,因而液体表现出各向同性;
④液体分子的热运动虽然与固体分子类似,但无长期固定的平衡位置,可在液体中移动,因而显示出流动性,且扩散比固体快。
2.液体的表面张力
如果在液体表面任意画一条线,线两侧的液体之间的作用力是引力,它的作用是使液体面绷紧,所以叫液体的表面张力。
特别提醒:
(1)表面张力使液体自动收缩,由于有表面张力的作用,液体表面有收缩到最小的趋势,表面张力的方向跟液面相切。
(2)表面张力的形成原因是表面层(液体跟空气接触的一个薄层)中分子间距离大,分子间的相互作用表现为引力。
(3)表面张力的大小除了跟边界线长度有关外,还跟液体的种类、温度有关。
四、液晶
1.液晶的物理性质
液晶具有液体的流动性,又具有晶体的光学各向异性。
2.液晶分子的排列特点
液晶分子的位置无序使它像液体,但排列是有序使它像晶体。
3.液晶的光学性质对外界条件的变化反应敏捷
液晶分子的排列是不稳定的,外界条件和微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如温度、压力、摩擦、电磁作用、容器表面的差异等,都可以改变液晶的光学性质。
如计算器的显示屏,外加电压液晶由透明状态变为混浊状态。
五、气体
1.气体的状态参量
(1)温度:温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。
热力学温度是国际单位制中的基本量之一,符号T,单位K(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。关系是t=T-T0,其中T0=273.15K两种温度间的关系可以表示为:T = t+273.15K和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。
0K是低温的极限,它表示所有分子都停止了热运动。可以无限接近,但永远不能达到。
气体分子速率分布曲线:

图像表示:拥有不同速率的气体分子在总分子数中所占的百分比。图像下面积可表示为分子总数。
特点:同一温度下,分子总呈“中间多两头少”的分布特点,即速率处中等的分子所占比例最大,速率特大特小的分子所占比例均比较小;温度越高,速率大的分子增多;曲线极大值处所对应的速率值向速率增大的方向移动,曲线将拉宽,高度降低,变得平坦。
(2)体积:气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。
(3)压强:气体的压强是由于大量气体分子频繁碰撞器壁而产生的。
(4)气体压强的微观意义:大量做无规则热运动的气体分子对器壁频繁、持续地碰撞产生了气体的压强。单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力。所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。
(5)决定气体压强大小的因素:
①微观因素:气体压强由气体分子的密集程度和平均动能决定:
A.气体分子的密集程度(即单位体积内气体分子的数目)越大,在单位时间内,与单位面积器壁碰撞的分子数就越多;
.气体的温度升高,气体分子的平均动能变大,每个气体分子与器壁的碰撞(可视为弹性碰撞)给器壁的冲力就大;从另一方面讲,气体分子的平均速率大,在单位时间里撞击器壁的次数就多,累计冲力就大。
②宏观因素:气体的体积增大,分子的密集程度变小。在此情况下,如温度不变,气体压强减小;如温度降低,气体压强进一步减小;如温度升高,则气体压强可能不变,可能变化,由气体的体积变化和温度变化两个因素哪一个起主导地位来定。
2.气体实验定律

3.对气体实验定律的微观解释
(1)玻意耳定律的微观解释
一定质量的理想气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气体的体积减小到原来的几分之一,气体的密集程度就增大到原来的几倍,因此压强就增大到原来的几倍,反之亦然,所以气体的压强与体积成反比。
(2)查理定律的微观解释
一定质量的理想气体,说明气体总分子数N不变;气体体积V不变,则单位体积内的分子数不变;当气体温度升高时,说明分子的平均动能增大,则单位时间内跟器壁单位面积上碰撞的分子数增多,且每次碰撞器壁产生的平均冲力增大,因此气体压强p将增大。
(3)盖·吕萨克定律的微观解释
一定质量的理想气体,当温度升高时,气体分子的平均动能增大;要保持压强不变,必须减小单位体积内的分子个数,即增大气体的体积。

六、热力学定律
1.热力学第零定律(热平衡定律):如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡。

(1)做功和热传递都能改变物体的内能。也就是说,做功和热传递对改变物体的内能是等效的。但从能量转化和守恒的观点看又是有区别的:做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。
(2)符号法则: 体积增大,气体对外做功,W为“一”;体积减小,外界对气体做功,W为“+”。气体从外界吸热,Q为“+”;气体对外界放热,Q为“一”。温度升高,内能增量DE是取“+”;温度降低,内能减少,DE取“一”。
(3)三种特殊情况:
l等温变化DE=0,即 W+Q=0
l绝热膨胀或压缩:Q=0即 W=DE
l 等容变化:W=0 ,Q=DE
(4)由图线讨论理想气体的功、热量和内能
3.热学第二定律
(1)第二类永动机不可能制成 (满足能量守恒定律,但违反热力学第二定律)
实质:涉及热现象(自然界中)的宏观过程都具有方向性,是不可逆的
(2)热传递方向表述(克劳修斯表述):
不可能使热量由低温物体传递到高温物体,而不引起其它变化。(热传导有方向性)
(3)机械能与内能转化表述(开尔文表述):
不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化。(机械能与内能转化具有方向性)。
4.热力学第三定律:热力学零度不可达到。

5.熵增加原理:在任何自然过程中,一个孤立系统的总熵是不会减少的。
——孤立系统熵增加过程是系统热力学概率增大的过程(即无序度增大的过程),是系统从非平衡态趋于平衡态的过程,是一个不可逆过程。熵的增加表示宇宙物质的日益混乱和无序
高考理综答题技巧方法大全推荐 2
1、课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,新的知识有所了解,以减少听课过程中的盲目性和被动性,有助于提高课堂效率。预习后把自己理解了的知识与老师的讲解进行比较、分析即可提高自己思维水平,预习还可以培养自己的自学能力。
2、要听好课,我们应善于抓课堂的要点,这主要是指重点和难点两个方面。心理学研究表明,我们听课注意力集中的时间一般在20分钟左右,(要想一节课几十分钟内都保持精力高度集中是不可能的),所以我们应将这有限的集中注意时间用到“刀刃”上。4、作好笔记。笔记不是记录而是将上述听课中的重点,难点等作出简单扼要的记录,记下讲课的要点以及自己的感受或有创新思维的见解。以便复习,消化。
高考理综答题技巧方法大全推荐 3
考点1 杠杆
1. 杠杆基本知识
定义 在力的作用下可绕一固定点转动的硬棒叫杠杆 五 要 素 支点 杠杆绕着转动的点,一般用字母O表示 动力 使杠杆转动的力,一般用字母F1表示 阻力 阻碍杠杆转动的力,一般用字母F2 表示 动力臂 从支点到动力作用线的距离,一般用字母l1表示 阻力臂 从支点到阻力作用线的距离,一般用字母l2表示说明:
①动力、阻力都是杠杆受的力,所以作用点都在杠杆上;
②动力、阻力的方向不一定相反,但它们使杠杆转动的方向相反;
③当力的作用线过支点时,该力的力臂为零。
2. 力臂画法
说明:
①找支点O;
②画力的作用线(虚线);
③画力臂(虚线,过支点垂直力的作用线作垂线,标垂足);
④标力臂(大括号或背向箭头)
3. 杠杆的分类
名称 特征 特点 应用举例 省力杠杆 动力臂大于阻力臂 省力、费距离 撬棒、铡刀、动滑轮、轮轴、羊角锤、钢丝钳、手推车、花枝剪刀 费力杠杆 动力臂小于阻力臂 费力、省距离 缝纫机踏板、起重臂、人的前臂、理发剪刀、钓鱼竿 等臂杠杆 动力臂等于阻力臂 不省力、不费力 天平、定滑轮考点2 杠杆平衡条件
1.杠杆平衡
杠杆静止或匀速转动。
2.探究过程
调节杠杆两端的平衡螺母,使杠杆在水平位置平衡.这样做的目的是:排除杠杆自重对平衡的影响;可以方便地从杠杆上量出力臂。
3.探究结论
杠杆的平衡条件(或杠杆原理):动力x动力臂=阻力x阻力臂
考点3 滑轮
名称 定义 实质 特点 定滑轮 轴固定不动的滑轮 等臂杠杆 使用定滑轮不省力,但可以改变力的方向 动滑轮 轴可以随物体一起运动的滑轮 动力臂为阻力臂二倍的杠杆 使用动滑轮能省一半力,但费一倍距离,且动滑轮不能改变力的方向 滑轮组 由定滑轮和动滑轮组合而成①在忽略滑轮与轴之间的摩擦和绳重的情况下,使用滑轮组时,重物和动滑轮总重由几股绳子承担,提起重物所用的力就等于总重的几分之一;
②可以达到既省力又改变力的方向的目的
高考理综答题技巧方法大全推荐 4
要独立地(指不依赖他人),保质保量地完成一些题目。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。另外,对于完成作业要有如下的五点要求:①书写工整;②作图规范;③表达清楚;④推理严密;⑤计算准确。还有作业批改完发下去以后,有错的要认真订正并装订保存好,留待以后复习时用。
高考理综答题技巧方法大全推荐 5
1.理综主观题要用学科专业术语表达。物理、化学和生物都有各自的学科语言,要用本学科的专业术语和规范的表达方式来组织答案,不能用自造的词语来组织答案。
2.理综主观题叙述过程中思路要清晰,逻辑关系要严密,表述要准确,努力达到言简意赅,切中要点和关键。
3.理综主观题既要规范书写又要做到文笔流畅,不写病句和错别字,特别是专业名词和概念。
4.遇到理综难题时,先放下,等做完容易的题后,再解决,尽量回忆本题所考知识与我们平时所学哪部分理综知识相近、平时老师是怎样处理这类问题的。
5.理综主观题尽量不要空题,不会做的,按步骤尽量去解答,努力抓分。
高考理综答题技巧方法大全推荐_精选范文网




