首页 > 学习方法 > 通用学习方法 > 学习经验

数学反比例函数知识点整理集锦

发布时间: 浏览量:0

数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.下面小编给大家分享一些六年级上册数学第二单元知识,希望能够帮助大家,欢迎阅读!

数学反比例函数知识点整理集锦 1

第二、四单元 万以内的加法和减法

1、最大的几位数和最小的几位数:

最大的一位数是9, 最小的一位数是0.

最大的二位数是99, 最小的二位数是10

最大的三位数是999, 最小的三位数是100

最大的四位数是9999, 最小的四位数是1000

最大的五位数是99999, 最小的五位数是10000

最大的三位数比最小的四位数小1。

2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

3、两个三位数相加的和:可能是三位数,也有可能是四位数。

4、加法公式:

加数 + 加数 = 和

和 - 另一个加数 = 加数

5、减法公式:

被减数 - 减数 = 差

差 + 减数 = 被减数 或 被减数 = 差 + 减数

被减数 - 差 = 减数

6、口算时:

例:(1)35+48,先算35+40=75,再算75+8=83。

(2)72-28,先算72-20=52,再算52-8=44

或 先算72-30=42,再算42+2=44

7、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。

第五单元 倍的认识

求一个数是另一个数的几倍是多少? 用除法计算: 一个数÷另一个数=倍数

36是4的几倍? 36÷4=9

已知一个数的几倍是A,求这个数。 用除法计算: A÷倍数=这个数

已知一个数的5倍数是35,求这个数? 35÷5=7

求一个数的几倍是多少? 用乘法计算: 一个数×倍数= 结果

9的6倍是多少? 9×6=54

数学反比例函数知识点整理集锦 2

反比例性质

1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交, 求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。

2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于x轴,y轴做垂线的交点所连接的线段是相 互平行的,同时一次函数与反比函数的交点到一次函数与x轴,y轴的交点的距离是相等的。

3规律:题目中给出线段比例和四边形的面积求k 问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。求出k(此时不用具体求出点坐标)。

4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点 处的几何意义都相同的思想转化出面积问题。

5规律:若反比例函数图像经过多个点,那么在这几点处的几何意义是相同的。根据相等的关系我们可以将等积量转化成等比量。

6规律:当反比例函数与正三角形的某一边有交点时,可以根据正三角形的特性表示出该交点的坐标,从而计算出该点的坐标得到k。

7规律:当题目给出的线段之间的数量关系时,可构造直角三角形用相似的关系具体的求出点的坐标计算k的值。

8规律:当反比例函数解析式已知,而要求图像上点的坐标问题。同长情况下用全等或相似的关系将点的坐标用同一字母代数式表示出来,再利用k的几何意义求出点坐标。

9规律:直接利用面积比和相似比之间的关系确定k值。

10规律:当一次函数与反比例函数相交有特殊角度时(30°,45°,60°)或一次函数k为( √3/3 ,√3 .....)时,将所给的等量数据转化成反比函数图像上点的横纵坐标乘积(不用具体求出坐标点)得k值。

11规律:巧用k值,建立方程(方程组)解答。

12规律:类似反比例函数的问题,根据题目的特殊条件不用具体计算线段的长度,应用对比,转化思想解答。

13规律:给出反比例函数解析式,应用相似比与面积比之间的关系,面积与k之间的关系解答。

数学反比例函数知识点整理集锦 3

概 率

3.1.1 —3.1.2随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

3.1.3概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

3.2.1 —3.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

3.3.1—3.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:

(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等。

数学反比例函数知识点整理集锦 4

★ 初中数学圆的知识点归纳

★ 怎样快速记忆初一数学公式

★ 七年级英语必备知识点总结

★ 七年级语文知识点梳理

数学反比例函数知识点整理集锦 5

比和比的应用

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)

∶ ∶ ∶ ∶

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、 比和除法、分数的联系:

比 前 项 比号“:” 后 项 比值

除 法 被除数 除号“÷” 除 数 商

分 数 分 子 分数线“—” 分 母 分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

①用比的前项和后项同时除以它们的最大公因数。

(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = = 3∶2

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如: 已知两个量之比为 ,则设这两个量分别为 。

6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

TAG标签: 数学 知识点

数学反比例函数知识点整理集锦_精选范文网

数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.下面小编给大家分享一些六年级上册数学第二单元知识,希望能够帮助大家,欢迎阅读!六年级上册数学第
推荐度:
点击下载文档文档为doc格式