首页 > 学习方法 > 通用学习方法 > 学习经验

六年级上册数学第二单元知识点参考合集

发布时间: 浏览量:0

有知识不等于有智慧,知识积存得再多,若没有智慧加以应用,知识就失去了价值。下面小编给大家分享一些最新苏版数学六年级下知识,希望能够帮助大家,欢迎阅读!

六年级上册数学第二单元知识点参考合集 1

第三单元  【角的度量】

3、从一点引出两条射线所组成的图形叫做角。       

4、角的计量单位是“度”,用符号“ °”表示。 

将圆平均分成360 份,每一份所对的角的大小是(   1 ) 度,记做1°。 

5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越(   大 )。 

6、度量角的工具叫量角器。 

7、量角的步骤: 

①把量角器的( 中心  )与角的顶点重合,0°刻度线与角的一条边重合。   

②角的另一条边所对的量角器上的刻度,就是这个角的度数。 

8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。  

9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=( 180 )°

10、一条射线绕它的端点旋转一周,形成的角叫做周角。

1周角=( 360 )°     

1周角=2平角=4直角    

1直角=( 90 )° 

11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。     

锐角<直角<钝角<平角<周角 

12、画角的步骤: 

(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。    

(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。    

(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。 

13、经过一点可以画无数条直线;经过两个点,只能画(  1  )条直线。 

14、用三角板可以画的角:180° 165° 150° 135° 120° 105° 90° 75° 60° 45° 30° 15° 

六年级上册数学第二单元知识点参考合集 2

长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长×宽+(长×高+宽×高)×2

=2(ab+ah+bh)-ab

=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算】

大单位× 进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位× 进率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分

六年级上册数学第二单元知识点参考合集 3

不等式与不等式组

一、不等式

不等式及其解集

1.不等式:用不等号(包括:>、图片、图片、<、≠)表示大小关系的式子。

2.不等式的解:使不等式成立的未知数的值,叫不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

不等式的性质:

性质1:如果a>b,b>c,那么a>c(不等式的传递性).  

性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。如果a>b,那么a+c>b+c(不等式的可加性). 

性质3: 不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式的两边同乘(除以)同一个负数,不等号的方向改变。

如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则)< span=""></bc.(不等式的乘法法则)<>

性质4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法则) 

性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性) 

性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0<n<1时也成立. (乘方法则) < span=""></n<1时也成立. (乘方法则) <>

二、一元一次不等式

1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式。

2、不等式的解法:

步骤:去分母,去括号,移项,合并同类项,系数化为一;

注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。

三、一元一次不等式组

1.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2.不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。

3.解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的解集。

解一元一次不等式组的一般方法: 

以两条不等式组成的不等式组为例,

①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”

②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大” 

③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中

④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”不等式组的解集的确定方法(a>b)

六年级上册数学第二单元知识点参考合集 4

第一单元 分数乘法

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。< p="">

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1。

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。带分数的倒数小于1。

(六)分数乘法应用题——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、什么是速度?

速度是单位时间内行驶的路程。

速度=路程÷时间

时间=路程÷速度

路程=速度×时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙

少:(乙-甲)÷乙

六年级上册数学第二单元知识点参考合集 5

图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……

等腰三角形有1条对称轴,

等边三角形有3条对称轴,

长方形有2条对称轴,

正方形有4条对称轴,

等腰梯形有1条对称轴,

任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:

①对应点到对称轴的距离相等;

②对应点的连线与对称轴垂直;

③对称轴两边的图形大小、形状完全相同。

(5)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车

(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

旋转的性质:

(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

(2)其中对应点到旋转中心的距离相等;

(3)旋转前后图形的大小和形状没有改变;

(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

TAG标签: 数学 知识点

六年级上册数学第二单元知识点参考合集_精选范文网

有知识不等于有智慧,知识积存得再多,若没有智慧加以应用,知识就失去了价值。下面小编给大家分享一些最新苏版数学六年级下知识,希望能够帮助大家,欢迎阅读!最新苏版数学六年级下知识1数的认识整数【正数、0、
推荐度:
点击下载文档文档为doc格式