高二上学期数学知识点内容经典精选
相关文章
很多同学在复习高二上册数学时,因为之前没有做过系统的总结,导致复习时效率不高。下面小编为大家带来高二上学期数学基础知识点总结,希望大家喜欢!
高二上学期数学知识点内容经典精选 1
一、映射与函数:
(1)映射的概念:(2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;
②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
高二上学期数学知识点内容经典精选 2
一、导数的应用
1、用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
四、坐标平面上的直线
1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
五、圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
高二上学期数学知识点内容经典精选 3
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二上学期数学知识点内容经典精选 4
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
高二上学期数学知识点内容经典精选 5
选修2-2
导数及其应用
一.导数概念的引入
数学选修2-2知识点总结
1.导数的物理意义:瞬时速率。一般的,函数yf(x)在__0处的瞬时变化率是
x0limf(x0x)f(x0),
x我们称它为函数yf(x)在__0处的导数,记作f(x0)或y|__0,即
f(x0)=limx0f(x0x)f(x0)
xP时,直线PT与2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于
曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0)P时,函,当点Pn趋近于
xnx0数yf(x)在__0处的导数就是切线PT的斜率k,即
klimx0f(xn)f(x0)f(x0)
xnx03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即
f(x)lim二.导数的计算
基本初等函数的导数公式:
x0f(__)f(x)
x11若f(x)c(c为常数),则f(x)0;2若f(x)x,则f(x)x;
3若f(x)sinx,则f(x)cosx;4若f(x)cosx,则f(x)sinx;5若f(x)a,则f(x)alna;6若f(x)e,则f(x)e
x7若f(x)loga,则f(x)____11;8若f(x)lnx,则f(x)xlnax导数的运算法则
1.[f(x)g(x)]f(x)g(x)
2.[f(x)g(x)]f(x)g(x)f(x)g(x)3.[f(x)f(x)g(x)f(x)g(x)]2g(x)[g(x)]复合函数求导
yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数yf(g(x))g(x)
三.导数在研究函数中的应用1.函数的单调性与导数:
一般的,函数的单调性与其导数的正负有如下关系:
在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增;如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数
极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:
(1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;4.函数的最大(小)值与导数
函数极大值与最大值之间的关系.
求函数yf(x)在[a,b]上的最大值与最小值的步骤(1)求函数yf(x)在(a,b)内的极值;
(2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个最大值,最小的是最小值.
四.生活中的优化问题
利用导数的知识,,求函数的最大(小)值,从而解决实际问题
第二章推理与证明
考点数学归纳法
1.它是一个递推的数学论证方法.
2.步骤:A.命题在n=1(或n0)时成立,这是递推的基础;B.假设在n=k时命题成立C.证明n=k+1时命题也成立,
完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。第一章数系的扩充和复数的概念考点一:复数的概念
(1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.
(2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,叫做纯虚数.
(3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.
(4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.
(5)复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部
分叫做虚轴。
(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。考点二:复数的运算
1.复数的加,减,乘,除按以下法则进行设z1abi,z2cdi(a,b,c,dR)则
z1z2(ac)(bd)iz1z2(acbd)(adbc)i
z1(acbd)(adbc)i(z20)22z2cd2,几个重要的结论
(1)|z1z2|2|z1z2|22(|z1|2|z2|2)(2)zz|z|2|z|2(3)若z为虚数,则|z|z3.运算律(1)zzzmnmn22;(2)(z)zmnmnn;(3)(z1z2)nz1z2n(m,nR)
4.关于虚数单位i的一些固定结论:
(1)i1(2)ii(3)i1(2)ii234nn2in3in
高二上学期数学知识点内容经典精选_精选范文网




