高二数学教案详案范文精选
相关文章
数学教案怎么写?教学过程设计因材施教,体现学生的主体作用,让学生爱学、会学,教学生掌握学习方法。今天小编在这给大家整理了高二数学教案大全,接下来随着小编一起来看看吧!
高二数学教案详案范文精选 1
预习课本P103~105,思考并完成以下问题
(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?
(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?
(3)向量数量积的性质有哪些?
(4)向量数量积的运算律有哪些?
[新知初探]
1.向量的数量积的定义
(1)两个非零向量的数量积:
已知条件向量a,b是非零向量,它们的夹角为θ
定义a与b的数量积(或内积)是数量|a||b|cosθ
记法a·b=|a||b|cosθ
(2)零向量与任一向量的数量积:
规定:零向量与任一向量的数量积均为0.
[点睛](1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.
(2)两个向量的数量积记作a·b,千万不能写成a×b的形式.
2.向量的数量积的几何意义
(1)投影的概念:
①向量b在a的方向上的投影为|b|cosθ.
②向量a在b的方向上的投影为|a|cosθ.
(2)数量积的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
[点睛](1)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成a·b|a|.
(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.
3.向量数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥b?a·b=0.
(2)当a与b同向时,a·b=|a||b|,
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[点睛]对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相垂直.
4.向量数量积的运算律
(1)a·b=b·a(交换律).
(2)(λa)·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[点睛](1)向量的数量积不满足消去律:若a,b,c均为非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因为a·b,b·c是数量积,是实数,不是向量,所以(a·b)·c与向量c共线,a·(b·c)与向量a共线,因此,(a·b)·c=a·(b·c)在一般情况下不成立.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.()
(2)若a·b=b·c,则一定有a=c.()
(3)若a,b反向,则a·b=-|a||b|.()
(4)若a·b=0,则a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a与b的夹角为60°,则a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,则a与b的夹角为()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夹角为θ,|a|=2,|b|=3.
(1)若θ=135°,则a·b=________;
(2)若a∥b,则a·b=________;
(3)若a⊥b,则a·b=________.
答案:(1)-32(2)6或-6(3)0
向量数量积的运算
[典例](1)已知向量a与b的夹角为120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).
(2)如图,正三角形ABC的边长为2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a与b,b与c,c与a的夹角均为120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量数量积的求法
(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.
(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法
运算.
[活学活用]
已知|a|=3,|b|=4,a与b的夹角为120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).
解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
与向量的模有关的问题
[典例](1)(浙江高考)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.
(2)已知向量a,b的夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
[解析](1)令e1与e2的夹角为θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b与e1,e2的夹角均为30°,
∴b·e1=|b||e1|cos30°=1,
从而|b|=1cos30°=233.
(2)∵a,b的夹角为45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常见思路及方法
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.
(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.
[活学活用]
已知向量a,b满足|a|=|b|=5,且a与b的夹角为60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.
两个向量的夹角和垂直
题点一:求两向量的夹角
1.(重庆高考)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()
A.π3B.π2
C.2π3D.5π6
解析:选C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
题点二:证明两向量垂直
2.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).
证明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a与b不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()
A.-32B.32
C.±32D.1
解析:选B∵3a+2b与ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.
求向量a与b夹角的思路
(1)求向量夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在个别含有|a|,|b|与a·b的等量关系式中,常利用消元思想计算cosθ的值.
层级一学业水平达标
1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()
A.π6B.π4
C.π3D.π2
解析:选C由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影为32,则a·b等于()
A.3B.92
C.2D.12
解析:选B设a与b的夹角为θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为()
A.-6B.6
C.3D.-3
解析:选B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b满足|a|=4,|b|=3,夹角为60°,则|a+b|=()
A.37B.13
C.37D.13
解析:选C|a+b|=?a+b?2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四边形ABCD中,=,且·=0,则四边形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:选B∵=,即一组对边平行且相等,·=0,即对角线互相垂直,∴四边形ABCD为菱形.
6.给出以下命题:
①若a≠0,则对任一非零向量b都有a·b≠0;
②若a·b=0,则a与b中至少有一个为0;
③a与b是两个单位向量,则a2=b2.
其中,正确命题的序号是________.
解析:上述三个命题中只有③正确,因为|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.当非零向量a,b垂直时,有a·b=0,显然①②错误.
答案:③
7.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1与e2是两个夹角为60°的单位向量,a=2e1+e2,b=2e2-3e1,求a与b的
夹角.
解:因为|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a与b的夹角为120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影为-1.
(1)求a与b的夹角θ;
(2)求(a-2b)·b;
(3)当λ为何值时,向量λa+b与向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影为|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b与a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
层级二应试能力达标
1.已知|a|=2,|b|=1,且a与b的夹角为π3,则向量m=a-4b的模为()
A.2B.23
C.6D.12
解析:选B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,则·等于()
A.-16B.-8
C.8D.16
解析:选D法一:因为cosA=ACAB,故·=||·||cosA=||2=16,故选D.
法二:在上的投影为||cosA=||,故·=|cosA=||2=16,故选D.
3.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|=()
A.1B.3
C.5D.3
解析:选C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因为|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,则|a-b|=|a|2+|b|2-2a·b=5.
4.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC的中点,则·=()
A.-3B.0
C.-1D.1
解析:选C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
则c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如图,作==a,
=b,则=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夹角为45°,且|a|=4,12a+b·(2a-3b)=12,则|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍负),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,满足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夹角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夹角为45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为π3,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
解:由向量2te1+7e2与e1+te2的夹角为钝角,
得?2te1+7e2?·?e1+te2?|2te1+7e2|·|e1+te2|<0.即
(2te1+7e2)·(e1+te2)<0,化简即得
2t2+15t+7<0,解得-7
当夹角为π时,也有(2te1+7e2)·(e1+te2)<0,
但此时夹角不是钝角,
设2te1+7e2=λ(e1+te2),λ<0,可得
2t=λ,7=λt,λ<0,?λ=-14,t=-142.
∴所求实数t的取值范围是
-7,-142∪-142,-12.
高二数学教案详案范文精选 2
学习目标
1.回顾在平面直角坐标系中刻画点的位置的方法.
2.能够建立适当的直角坐标系,解决数学问题.
学习过程
一、学前准备
1、通过直角坐标系,平面上的与(),曲线与建立了联系,实现了。
2、阅读P3思考得出在直角坐标系中解决实际问题的过程是:
二、新课导学
◆探究新知(预习教材P1~P4,找出疑惑之处)
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
问题3:(1).如何把平面内的点与有序实数对(x,y)建立联系?(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?
问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?
问题5:如何刻画一个几何图形的位置?
需要设定一个参照系
(1)、数轴它使直线上任一点P都可以由惟一的实数x确定
(2)、平面直角坐标系:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定
(3)、空间直角坐标系:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定
(4)、抽象概括:在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:A.曲线C上的点坐标都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解为坐标的点都在曲线C上。那么,方程f(x,y)=0叫作曲线C的方程,曲线C叫作方程f(x,y)=0的曲线。
问题6:如何建系?
根据几何特点选择适当的直角坐标系。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
高二数学教案详案范文精选 3
教学目标:
1.了解演绎推理的含义。
2.能正确地运用演绎推理进行简单的推理。
3.了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理、进行简单的推理。
教学难点:了解合情推理与演绎推理之间的联系与差别。
教学过程:
一、复习:合情推理
归纳推理从特殊到一般
类比推理从特殊到特殊
从具体问题出发――观察、分析比较、联想――归纳。类比――提出猜想
二、问题情境。
观察与思考
1.所有的金属都能导电
铜是金属,
所以,铜能够导电
2.一切奇数都不能被2整除,
(2100+1)是奇数,
所以,(2100+1)不能被2整除。
3.三角函数都是周期函数,
tan是三角函数,
所以,tan是周期函数。
提出问题:像这样的推理是合情推理吗?
二、学生活动:
1.所有的金属都能导电←————大前提
铜是金属,←-----小前提
所以,铜能够导电←――结论
2.一切奇数都不能被2整除←————大前提
(2100+1)是奇数,←――小前提
所以,(2100+1)不能被2整除。←―――结论
3.三角函数都是周期函数,←——大前提
tan是三角函数,←――小前提
所以,tan是周期函数。←――结论
三、建构数学
演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理。
1.演绎推理是由一般到特殊的推理;
2.“三段论”是演绎推理的一般模式;包括
(1)大前提——已知的一般原理;
(2)小前提——所研究的特殊情况;
(3)结论——据一般原理,对特殊情况做出的判断.
三段论的基本格式
M—P(M是P)(大前提)
—M(S是M)(小前提)
—P(S是P)(结论)
3.三段论推理的依据,用集合的观点来理解:
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。
四、数_用
例1、把“函数y=x2+x+1的图象是一条抛物线”恢复成完全三段论。
解:二次函数的图象是一条抛物线(大前提)
函数y=x2+x+1是二次函数(小前提)
所以,函数y=x2+x+1的图象是一条抛物线(结论)
例2、已知lg2=m,计算lg0.8
解:(1)lgan=nlga(a>0)——大前提
lg8=lg23————小前提
lg8=3lg2————结论
lg(a/b)=lga-lgb(a>0,b>0)——大前提
lg0.8=lg(8/10)——-小前提
lg0.8=lg(8/10)——结论
例3、如图;在锐角三角形ABC中,AD⊥BC,BE⊥AC,
D,E是垂足,求证AB的中点M到D,E的距离相等
解:(1)因为有一个内角是只直角的三角形是直角三角形,——大前提
在△ABC中,AD⊥BC,即∠ADB=90°——小前提
所以△ABD是直角三角形——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
因为DM是直角三角形斜边上的中线,——小前提
所以DM=AB——结论
同理EM=AB
所以DM=EM.
练习:第35页练习第1,2,3,4,题
五、回顾小结:
演绎推理具有如下特点:课本第33页。
演绎推理错误的主要原因是
1.大前提不成立;2,小前提不符合大前提的条件。
作业:第35页练习第5题。习题2。1第4题。
师:请同学们解答下列问题(引例):
(1)观察数列1,1+2,1+2+3,1+2+3+4,…,猜测数列的通项公式an=.
(2)三角形的中位线平行于第三边,并且等于第三边的一半,推广到空间,你会得到什么结论?
(3)如图∠1=∠2,则直线a,b的位置关系如何?为什么?
生1、(1)an=1+2+3+…+n=.
(2)锥体的中截面平行底面,其面积等于底面积的.
生2、(3)a∥b.
理由:如图∠2=∠3,
∵∠1=∠2,
∴∠1=∠3.
∴a∥b.
师:(1)(2)小题得到结论的过程是用的什么推理?
生3:合理推理;
师:你能说的具体些吗?
生3:(1)用到的是归纳推理,(2)用到的是类比推理
师:归纳推理与类比推理的特点分别是什么?
众生:归纳推理是从特殊到一般;类比推理是从特殊到特殊.
师:(3)小题得到结论的过程是合情推理吗?
众生:不是.
师:(3)得到结论的过程不是合情推理,那么这种推理方式是什么呢?这就是这节课我们要学习的课题——演绎推理
(板书或课件中打出:演绎推理)
师:下面我们再看一个命题:
命题:等腰三角形的两底角相等.
A
C
D
师:为了证明这个命题,根据以往的经验,我们应先画出图形,写出已知、求证.请一位同学完成一下?
生4、已知,△ABC中,AB=AC,
求证:∠B=∠C.
师:下面请一位同学到黑板上证明一下,其他同学在练习本上做.
生5:证明:如图作AD⊥BC垂足为D,
在Rt△ABD与Rt△ABC中,
∵AB=AC,……………………………P1
AD=AD,……………………………P2
∴△ADB≌△ADC.……………………P3
∴∠B=∠C.…………………………q
师:同学们看一下,生5的证明正确吗?
众生:正确.
师:还有其它证法吗?
生6:可以作∠BAC的平分线AD交BC于D。也可以取BC的中点D,连接AD,再证明△ADB≌△ADC。
师:很好(师顺便将生5证明的主要步骤标上P1P2P3,q),请同学们再观察生5的证明,P3是怎样得出的?
生7:根据P1P2两个条件为真,依据三角形全等的判定定理,推出P3为真.
师:q是怎样得出的?
生8:由于P3真,根据全等三角形的定义,得到q真.
师:像这种推理的方法叫做演绎推理。请同学们体会一下演绎推理,并尝试说一说什么是演绎推理?
生9:由概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,通常叫做演绎推理(这一步要在老师的引导下,学生不断完善下完成).
师:请同学们想一想,前面学习的利用合情推理得到的结论一定正确吗?
众生:不一定.
师:而演绎推理与合情推理不同,其基本特征是:当前提为真时,结论必然为真。
师:我们再看前面证明的步骤P3,q,由P3得到q的依据是什么?
众生:三角形全等的定义
师:很好,上面由P3得到q的过程,我们可以详细的写为:
全等三角形的对应角相等…………………………①
△ADB≌△ADC………………………………………②
∠B=∠C……………………………………………③
这就是一个典型的三段论推理,是演绎推理中经常使用的推理形式。其中①是大前提,②是小前提,③是结论。
师:请同学们考虑,一般的三段论可表示为什么?
生10:M是P
是M
所以,S是P
师:很好,这里“M是P”是什么?“S是M”是什么?“S是P”是什么?
生10::“M是P”是大前提—----提供一般性原理,“S是M”是小前提—-----指出一个特殊的对象,“S是P”的结论.
师:大前提与小前提结合,得出一般性原理和特殊对象之间的内在联系,从而得出“S是P”的结论.
在实际使用三段论时,为了简洁起见,经常略去大前提或者小前提,有时甚至都省略去。例如前面“命题:等腰三角形两底角相等”的证明中,由P3得q就略去大前提“全等三角形的对应角相等”,引例(3)的证明中,得到∠2=∠3时,略去了大前提“对顶角相等”,小前提“∠2,∠3是对顶角”等.师:下面再看几个例题
例1:已知:空间四边形ABCD中,点E、F分别是AB,AD的中点(如图),求证EF∥平面BCD.
(处理方式,请一位同学板演,其他同学在练习本上做,之后师生一起点评,并强调在数学解题的书写时一般是略去“大前提”.除非“大前提”很生疏.从而使学生养成书写严谨的好习惯,并且师生一起小结:线面平行的基本方法.)
例2:求证:当a>1时,有
㏒a(a+1)>㏒(a+1)a,
师:比较两个对数的大小,你能想到经常是用什么知识、方法吗?
生11:对数函数的单调性.
师:证明此题能直接利用对数函数的单调性解决吗?
众生:不能
师:怎样解决这个问题呢?请同学们再仔细观察这两个对数的差异、特点。
生12:第一,这两个对数的底数不同,第二,不等式左边对数的真数大于底数,不等式右边对数的真数小于底数。
师:同学们,你们由此能得到什么启发?
生13:∵a>1,
∴㏒a(a+1)>㏒aa=1,
㏒(a+1)a<㏒(a+1)(a+1)=1.
从而㏒a(a+1)>㏒(a+1)a.
师:你是如何得到最后结论的?
生13:不等式的性质(传递性)
师:请同学们观察本题的证明?
师:这里用到的推理规则是“如果aRb,bRc,则aRc”,其中R表示具有传递性的关系,这种推理规则叫做传递性关系推理。当然有些“关系”不具备传递性关系,同学们能举出几个例子吗?
生14:“≠”关系不具有传递性.∵1≠2,2≠1,但1≠1是错误的,∴“≠”关系不具有传递性.
生15:“同学”关系不具有传递性.
师:很好,我们再看例3.
例3:证明函数f(x)=x6-x3+x2-x+1的值恒为正数。
师:要证明一个式子的值恒大于零,一般情况下我们如何处理?
生16:对式子进行恒等变形。
师:请同学们把f(x)变形看一看?
生17:f(x)=x6-x2(x-1)-(x-1)
=x6+(x2+1)(1-x)
师:对生17变形得到的式子,请同学们观察一下对我们证本题有什么帮助?
生18:x6≥0,x2+1>0,要证明f(x)的值恒正只要再加一个条件
1-x≥0,即x≤1就可以了
师:能说的具体一些吗?
生18:当x≤1时,x6≥0,(x2+1)(1-x)≥0,且这两个式子不能同时取到零.
∴当x≤1时,x6+(x2+1)(1-x)>0
即f(x)的值恒正
师:此题证完了吗?
生19:没有,只证明了当x≤1时,f(x)的值恒正;x>1时还未证明.
师:x>1时如何证呢?还能用生17变形后的式子证明吗?
生20:生17变形后的式子不能证明当x>1的情况,应回到原来的式中去.
师:请同学们考虑如何证明,并证一下
(稍后,老师请一个同学回答一下)
生21:∵x>1,∴x6≥x3,x2≥x------------(A)
∴x6-x3≥0,x2-x≥0
∴x6-x3+x2-x≥0
∴f(x)=x6-x3+x2-x+1≥1>0
师:上面结论(A)是如何得到的?
生21:指数函数的性质.
师:同学们明白吗?
众生:明白
师:这样此题就解决了,请同学们完整写出此题的证明.
(并请一位同学板演,同学们做完后,师生共同点评)
师:这样解决问题的思想方法我们以前用过吗?
众生:用过.
师:像是什么?
众生:分类讨论,分类解决.
师:在这个证明中,对x所有可能的取值都给出了f(x)为正的证明,所以断定f(x)恒为正数,这种把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.
师:请同学们举出以前用完全归纳推理解决过的问题的例子?
生22:“一条直线与两平行平面所成角相等”的证明。
师:很好,这个证明分三种情况①直线l与一个平面垂直;②l∥或l,③l与斜交.不再多说了.请同学们做练习A、B的各题.
(稍后师生交流点评)
师:下面我们把这节课所学内容总结一下:
1、什么是演绎推理?三段论?
2、演绎推理与合情推理的曲区,作用?
3、体会传递关系推理及完全归纳推理.
4、学习演绎推理、三段论之后你有何所得?(书写的严谨性)
(这里教师引导学生自己总结,师生一起完善,形成完整的知识结构)。
师:(结束语):三段论推理(演绎推理)在现实生活中经常使用,如:“你要遵守学校规章制度”这一结论,是略去大前提“学生要遵守学校的规章制度”,略去小前提“你是学生”的三段论推理.事实上,只要我们善于观察、思考便能体会到生活处处有数学,生活处处用数学.下面布置作业.
作业:P62,习题2-1A,T1,BT3,下课.
高二数学教案详案范文精选 4
预习课本P103~105,思考并完成以下问题
(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?
(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?
(3)向量数量积的性质有哪些?
(4)向量数量积的运算律有哪些?
[新知初探]
1.向量的数量积的定义
(1)两个非零向量的数量积:
已知条件向量a,b是非零向量,它们的夹角为θ
定义a与b的数量积(或内积)是数量|a||b|cosθ
记法a·b=|a||b|cosθ
(2)零向量与任一向量的数量积:
规定:零向量与任一向量的数量积均为0.
[点睛](1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.
(2)两个向量的数量积记作a·b,千万不能写成a×b的形式.
2.向量的数量积的几何意义
(1)投影的概念:
①向量b在a的方向上的投影为|b|cosθ.
②向量a在b的方向上的投影为|a|cosθ.
(2)数量积的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
[点睛](1)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成a·b|a|.
(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.
3.向量数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥b?a·b=0.
(2)当a与b同向时,a·b=|a||b|,
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[点睛]对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相垂直.
4.向量数量积的运算律
(1)a·b=b·a(交换律).
(2)(λa)·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[点睛](1)向量的数量积不满足消去律:若a,b,c均为非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因为a·b,b·c是数量积,是实数,不是向量,所以(a·b)·c与向量c共线,a·(b·c)与向量a共线,因此,(a·b)·c=a·(b·c)在一般情况下不成立.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.()
(2)若a·b=b·c,则一定有a=c.()
(3)若a,b反向,则a·b=-|a||b|.()
(4)若a·b=0,则a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a与b的夹角为60°,则a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,则a与b的夹角为()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夹角为θ,|a|=2,|b|=3.
(1)若θ=135°,则a·b=________;
(2)若a∥b,则a·b=________;
(3)若a⊥b,则a·b=________.
答案:(1)-32(2)6或-6(3)0
向量数量积的运算
[典例](1)已知向量a与b的夹角为120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).
(2)如图,正三角形ABC的边长为2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a与b,b与c,c与a的夹角均为120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量数量积的求法
(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.
(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法
运算.
[活学活用]
已知|a|=3,|b|=4,a与b的夹角为120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).
解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
与向量的模有关的问题
[典例](1)(浙江高考)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.
(2)已知向量a,b的夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
[解析](1)令e1与e2的夹角为θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b与e1,e2的夹角均为30°,
∴b·e1=|b||e1|cos30°=1,
从而|b|=1cos30°=233.
(2)∵a,b的夹角为45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常见思路及方法
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.
(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.
[活学活用]
已知向量a,b满足|a|=|b|=5,且a与b的夹角为60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.
两个向量的夹角和垂直
题点一:求两向量的夹角
1.(重庆高考)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()
A.π3B.π2
C.2π3D.5π6
解析:选C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
题点二:证明两向量垂直
2.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).
证明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a与b不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()
A.-32B.32
C.±32D.1
解析:选B∵3a+2b与ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.
求向量a与b夹角的思路
(1)求向量夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在个别含有|a|,|b|与a·b的等量关系式中,常利用消元思想计算cosθ的值.
层级一学业水平达标
1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()
A.π6B.π4
C.π3D.π2
解析:选C由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影为32,则a·b等于()
A.3B.92
C.2D.12
解析:选B设a与b的夹角为θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为()
A.-6B.6
C.3D.-3
解析:选B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b满足|a|=4,|b|=3,夹角为60°,则|a+b|=()
A.37B.13
C.37D.13
解析:选C|a+b|=?a+b?2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四边形ABCD中,=,且·=0,则四边形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:选B∵=,即一组对边平行且相等,·=0,即对角线互相垂直,∴四边形ABCD为菱形.
6.给出以下命题:
①若a≠0,则对任一非零向量b都有a·b≠0;
②若a·b=0,则a与b中至少有一个为0;
③a与b是两个单位向量,则a2=b2.
其中,正确命题的序号是________.
解析:上述三个命题中只有③正确,因为|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.当非零向量a,b垂直时,有a·b=0,显然①②错误.
答案:③
7.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1与e2是两个夹角为60°的单位向量,a=2e1+e2,b=2e2-3e1,求a与b的
夹角.
解:因为|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a与b的夹角为120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影为-1.
(1)求a与b的夹角θ;
(2)求(a-2b)·b;
(3)当λ为何值时,向量λa+b与向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影为|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b与a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
层级二应试能力达标
1.已知|a|=2,|b|=1,且a与b的夹角为π3,则向量m=a-4b的模为()
A.2B.23
C.6D.12
解析:选B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,则·等于()
A.-16B.-8
C.8D.16
解析:选D法一:因为cosA=ACAB,故·=||·||cosA=||2=16,故选D.
法二:在上的投影为||cosA=||,故·=|cosA=||2=16,故选D.
3.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|=()
A.1B.3
C.5D.3
解析:选C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因为|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,则|a-b|=|a|2+|b|2-2a·b=5.
4.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC的中点,则·=()
A.-3B.0
C.-1D.1
解析:选C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
则c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如图,作==a,
=b,则=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夹角为45°,且|a|=4,12a+b·(2a-3b)=12,则|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍负),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,满足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夹角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夹角为45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为π3,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
解:由向量2te1+7e2与e1+te2的夹角为钝角,
得?2te1+7e2?·?e1+te2?|2te1+7e2|·|e1+te2|<0.即
(2te1+7e2)·(e1+te2)<0,化简即得
2t2+15t+7<0,解得-7
当夹角为π时,也有(2te1+7e2)·(e1+te2)<0,
但此时夹角不是钝角,
设2te1+7e2=λ(e1+te2),λ<0,可得
2t=λ,7=λt,λ<0,?λ=-14,t=-142.
∴所求实数t的取值范围是
-7,-142∪-142,-12.
高二数学教案详案范文精选 5
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
高二数学教案详案范文精选_精选范文网




