高二数学必修三知识点统计范文经典
相关文章
因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。小编高二频道为你整理了《人教版高二数学知识点总结》,助你金榜题名!
高二数学必修三知识点统计范文经典 1
极值的定义:
(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)
(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;
(2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x);
(2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
高二数学必修三知识点统计范文经典 2
一、曲线与方程
1.椭圆
椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。
2.双曲线
标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.
3.抛物线
1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。
2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。
3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。
用点差法解圆锥曲线的中点弦问题
二、空间几何体
1.空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。
2.球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。
三、正弦定理和余弦定理
1.正弦定理
在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R
2.余弦定理
三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。
高二数学必修三知识点统计范文经典 3
有关圆的字母表示方法
圆--⊙半径—r弧--⌒直径—d
扇形弧长/圆锥母线—l周长—C面积—S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定
理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距
离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO
10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
外离P>R+r;外切P=R+r;相交R-r
有关圆的计算公式
1.圆的周长C=2πr=πd
2.圆的面积S=s=πr?
3.扇形弧长l=nπr/180
4.扇形面积S=nπr?/360=rl/2
5.圆锥侧面积S=πrl
高二数学必修三知识点统计范文经典 4
在中国古代把数学叫算术,又称算学,最后才改为数学。
1.任意角
(1)角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边位置不同分为象限角和轴线角.
(2)终边相同的角:
终边与角相同的角可写成+k360(kZ).
(3)弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.
③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.
④弧度与角度的换算:360弧度;180弧度.
⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.
2.任意角的三角函数
(1)任意角的三角函数定义:
设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.
高二数学必修三知识点统计范文经典 5
函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
高二数学必修三知识点统计范文经典_精选范文网




