首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二数学考试技巧和方法参考总结

发布时间: 浏览量:4

高中数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。下面小编给大家分享一些高二数学立体几何学习技巧,希望能够帮助大家,欢迎阅读!

高二数学考试技巧和方法参考总结 1

1、课后及时复习。很多高二学生都没有课后复习的习惯,可能直到考试前才想起复习数学。如果高二学生等到把课堂内容都遗忘的差不多的时候才复习,就几乎是相当于重新学习了,这就凸显了课后即使复习的重要性。

2、定期重复巩固。即使是复习过的数学内容,以后仍需要定期巩固,但是复习的次数可以随着时间的增长逐步减小。高二学生可以巩固当天的新知识,也可以进行周小结或是每月进行阶段性总结。

3、背熟课本。高二学生想要学好数学,首先就要记熟数学课本上的知识点,尤其是数学课本上用颜色标出或是大写加粗的字,都要把它记熟,甚至是完完全全的背下来,这是学习数学的基础。只有将这些知识点应用到数学上,才有可能学好数学。

4、重视课本上的例题。高二学生想要学好数学,就要背熟课本上的例题,数学课本上的例题之所以是例题,就是因为它经典,同时也是灵活运用知识点的最好的题目。很多高二学生都不重视例题,但其实考试的题目,都是完完全全在例题的基础上变化出来的。

5、重点难点突破。高二学生要学会在复习过程中,特别要关注一些难点及容易造成误解的问题,分析其中的关键点和易错点,找出原因,记录在一个专门准备的小本子上,也可以在电脑上做一个重难点的记录,这样可以随时进行复习。

高二数学考试技巧和方法参考总结 2

1、首先以老师讲过的内容为主

对于高二学生来说,期末考试主要考的就是平时上课的时候老师讲的内容,所以高二学生要想期末考试取的好成绩,就要把老师要求掌握的内容都搞懂,这样有目的的复习才能提高学习效率,学习效率高了,考试成绩才能快速提升。

2、把课本上的例题做了

期末考试题都是老师们自己出的,一般都是讲过的题、或者是类似例题的题目,所以高二学生复习的时候要把课本上的例题做会,要注意理解,不然只记住过程和答案的话,如果题目稍微改一下,那就白白浪费了复习时间。

一般书上的例题都有几种解题方法,高二学生应该把几种方法都掌握,并且都能熟练运用。

3、不要做太难的题

期末复习的时候不要做太难的题,因为期末考试的题只有一两道特别难的题,大部分都是老师讲过的,还有一些就是老师说的送分题,也就是考的基础知识。

再者说了,攻克难题特别浪费时间,如果掌握了那道题或者那类题的做法还行,如果做了半天都没有搞明白,那就是既浪费时间又浪费精力,而且还会造成一些心理压力,对自己失去信心。

4、不要轻视概念、公式

理科各科目的概念、公式都比较多,背起来比较麻烦,而且有些同学认为理科不会考概念,所以平时也就不管了。

要知道虽然理科不直接考概念,但是会考相关的知识,你得理解了概念以后才能准确的分析题、做题。

还有就是公式,尤其是化学方程式,高二学生可能平时学的时候觉得没有什么问题,考试之前也不会去复习,但是考试的时候就出错了。因为化学方程式很容易出错,一不小心就忘了配平、反应条件等,所以高二学生在复习期末考试的时候,一定不能忽略了最基本的知识。

高二数学考试技巧和方法参考总结 3

一、逐渐提高逻辑论证能力

论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

二、立足课本,夯实基础

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

(2)培养空间想象力。

(3)得出一些解题方面的启示。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

三、“转化”思想的应用

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。

高二数学考试技巧和方法参考总结 4

1平行、垂直位置关系的论证的策略

(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧

主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:

(2)直线和平面所成的角

①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角

①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:

(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3空间距离的计算方法与技巧

(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体 积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距 离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4熟记一些常用的小结论

诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5平面图形的翻折、立体图形的展开等一类问题

要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

6与球有关的题型

只能应用“老方法”,求出球的半径即可。

7立体几何读题

(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。

(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。

(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。

8解题程序划分为四个过程

①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。

②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。

③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。

④回顾。对所得的结论进行验证,对解题方法进行总结。

高二数学考试技巧和方法参考总结 5

  1.审题与解题的关系

  有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等 ,从中获取尽可能多的信息,才能迅速找准解题方向。

  2.“会做”与“得分”的关系

  要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。

  3.快与准的关系

  只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

  4.难题与容易题的关系

  拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

  高二数学:逻辑思维的养成

  与语文学科重形象思维、感性思维不同,数学注重理性思维和逻辑思维。高中数学对知识的联想、抽象思维等逻辑推理的要求相对较高,数学教师如何在教学中抓住机遇,运用合理的方法培养学生的逻辑思维能力,是高中数学教学的一个重要目标。当然,在论述逻辑思维能力培养策略之前,还应简要阐释为什么要培养,这是论证不可少的过程,也是缜密逻辑思维的必然要求。

  学生思维能力的培养是一个漫长的过程,不可能一蹴而就。一般探讨逻辑能力的文章,都从逻辑思维的方式、推理基本方法等方面展开,我们探讨高中数学教学培养学生逻辑思维能力,不妨从整个教学过程着手,分阶段与任务去考察探究。通常情况,我们将教学过程粗分为课前预习、课堂教学、课后复习几大阶段来进行培养。在学习高中数学时,就要抓住“逻辑思维”这一主要矛盾,对症下药,有意识地去提升逻辑思维能力,为学好高中数学奠定优良的基础。

TAG标签: 数学 知识点

高二数学考试技巧和方法参考总结_精选范文网

高中数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。下面小编给大家分享一些高二数学立体几何学习技巧,希望
推荐度:
点击下载文档文档为doc格式