高一数学归纳法分析及解题步骤范文总结
相关文章
对于很多学习数学的高中生来货说,对于高中数学来说,概率题型是比较让人头疼的,它是高中数学中比较需要逻辑思维能力的。这次小编给大家整理了高考数学概率题解题技巧,供大家阅读参考。
高一数学归纳法分析及解题步骤范文总结 1
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、等腰梯形同一底上的两个角相等。
11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。
12、圆内接四边形的任何一个外角都等于它的内对角。
13、同弧或等弧所对的圆周角相等。
14、弦切角等于它所夹的弧对的圆周角。
15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、全等三角形的对应角相等。
17、相似三角形的对应角相等。
18、利用等量代换。
19、利用代数或三角计算出角的度数相等
20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
高一数学归纳法分析及解题步骤范文总结 2
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
高一数学归纳法分析及解题步骤范文总结 3
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
高一数学归纳法分析及解题步骤范文总结 4
1.熟悉基本的解题步骤和解题方法
解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
2.审题要认真仔细
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
3.认真做好归纳总结
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
高一数学归纳法分析及解题步骤范文总结 5
1.试卷分析法
就是把历次考试的数学卷子(包括自己做的测试卷、模拟卷——做完后会对着答案进行批改,计算得分,像正式考试一样)装订保存起来,一般是每10张为一册,然后定期进行复习。选择10张试卷为一册完全是个人经验,太少了看不出问题,太多了容易疲劳。每个人根据自己的特点可以进行调整。
2.通法解题法
通法就是最一般的解法。其实考试的时候多数数学题都是难度不大的题,是基础题。只要掌握好这些基础题的一般解法,一步一步来,不要老是去求新求异,通常会得比较高的分数。
题越难越好,越复杂越好?——只要认真分析一下历届高考题,就会发现不是这样的。所以说,平常认真地、“按部就班”地把基础题掌握好,考试就算考不了满分也一定不会低,最重要的是,这样的学生成绩一般不会有很大波动。
3.同学互助法
学习是一件很辛苦的事,几个志同道合的同学可以在一起学习。相互鼓励,相互支持,一起讨论。在这样的氛围下,枯燥会充满乐趣,成绩提高是很自然的。可以规定:今天我给你讲一个题,明天你再给我讲透一道题,效果非常好。
4.题海战术法
数学题海战术只是一个说法,意思就是说题还是需要多做的,这样才会熟能生巧。考试其实就是要求学生在同样的时间内用最快的速度、最高的准确率来完成同样多的题目——熟练必不可少。
5.知识点梳理法
这一方法非常适合于基础相对薄弱的学生。通过对主要知识点的梳理,可以让他全面了解知识结构,找到自己最薄弱的环节,然后“对症下药”。
6.专项训练法
不同科目的试卷有不同的题目类。如数学卷子可能有填空、选择、应用题等,如果觉得自己填空题把握不大,就专门训练填空题,直到感到游刃有余为止。
7.专题训练法
专题训练和专项训练不同。专题训练是侧重于内容上的训练块不太清楚,就可以找来英语语有的学生对数学中的函数感到理解不了,就针对它反复琢磨、研究。
8.记忆法
我们反对死记硬背,但对一些关键的公式、知识点、小结论还是需要记忆的。在考试时,遇到相关的题目,直接把记忆的内容写出来(注意再核实一下,因为记忆可能会出错),又快又准。
9.反思法
经常反思自己存在的问题,然后加以克服。
10.定计划法
凡是预则立,不预则废,定一个切实可行的计划会大大提高学习效率——制定计划时最好能掌握自己的生物钟,这一点上面已经提过了。
高一数学归纳法分析及解题步骤范文总结_精选范文网




