初一数学必须掌握的知识点范文整理
相关文章
漫长的学习生涯中,是不是听到知识点,就立刻清醒了?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点是我们提高成绩的关键!下面小编为大家带来数学小学知识点总结归纳,希望大家喜欢!
初一数学必须掌握的知识点范文整理 1
[关于坐标轴对称]
点P(x,y)关于x轴对称的点的坐标是(x,-y)
点P(x,y)关于y轴对称的点的坐标是(-x,y)
[关于原点对称]
点P(x,y)关于原点对称的点的坐标是(-x,-y)
[关于坐标轴夹角平分线对称]
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)
[关于平行于坐标轴的直线对称]
点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);
点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y)
初一数学必须掌握的知识点范文整理 2
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
初一数学必须掌握的知识点范文整理 3
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1_X2=c/a 注:韦达定理
判别式b2-4a=0 注:方程有相等的两实根
2-4ac>0 注:方程有一个实根
2-4ac<0 注:方程有共轭复数根
三角函数公式
两角和公式
in(A+B)=sinAcosB+cosAsinB
in(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
in(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
inA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n_2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱侧面积S=c_h
斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'
正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l
球的表面积S=4pi_r2
圆柱侧面积S=c_h=2pi_h
圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h
斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长
柱体体积公式;V=s_h圆柱体V=pi_r2h
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标
圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程y^2=2pxy^2=-2p_^2=2pyx^2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2
圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H
斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s_h圆柱体V=pi_r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
半角公式
in(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
inA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
2+4+6+8+10+12+14+…+(2n)=n(n+1)5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1、y=c(c为常数)y'=0
2、y=x^ny'=nx^(n-1)
3、y=a^xy'=a^xlna
4、y=e^xy'=e^x
5、y=logaxy'=logae/x
6、y=lnxy'=1/x
7、y=sinxy'=cosx
8、y=cosxy'=-sinx
9、y=tanxy'=1/cos^2x
10、y=cotxy'=-1/sin^2x
11、y=arcsinxy'=1/√1-x^2
12、y=arccosxy'=-1/√1-x^2
13、y=arctanxy'=1/1+x^2
14、y=arccotxy'=-1/1+x^2
初一数学必须掌握的知识点范文整理 4
1、平方与平方根
2、面积与平方
(1)任意两个正数的和的平方,等于这两个数的平方和
(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍
任意两个有理数的和(或差)的平方,等于这两个数的平方和,再加上(或减去)这两个数乘积的2倍
3、平方根
1正数有两个平方根,这两个平方根互为相反数;
2零只有一个平方根,它就是零本身;
3负数没有平方根
4、实数
无限不循环小数叫做无理数
有理数和无理数统称为实数
5、平方根的运算
6、算术平方根的性质
性质1一个非负数的算术平方根的平方等于这个数本身
性质2一个数的平方的算术平方根等于这个数的绝对值
7、算术平方根的乘、除运算
1)算术平方根的乘法
qrt(a)?sqrt(b)=sqrt(ab)(a>=0,b>=0)
2算)术平方根的除法
qrt(a)/sqrt(b)=sqrt(a/b)(a>=0,b>0)
通过分子、分母同乘以一个式子把分母中的根号化去火把根号中的分母化去,叫做分母有理化
3)被开方数的每个因数的指数都小于2;(2)被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根
8‘算术平方根的加、减运算
如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根
9、一元二次方程及其解法
1)一元二次方程
只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程
2)特殊的一元二次方程的解法
3)一般的一元二次方程的解法——配方法
用配方法解一元二次方程的一般步骤是:
1、化二次项系数为1用二次项系数去除方程两边,将方程化为x^2+px+q=0的形式
2、移项把常数项移至方程右边,将方程化为x^2+px=-q的形式
3、配方方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数
4、有平方根的定义,可知
(1)当p^2/4-q>0时,原方程有两个实数根;
(2)当p^2/4-q=0,原方程有两个相等的实数根(二重根);
(3)当p^2/4-q<0,原方程无实根
初一数学必须掌握的知识点范文整理 5
一、对照法
如何正确理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
二、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
三、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
四、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。 分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
初一数学必须掌握的知识点范文整理_精选范文网




