首页 > 学习方法 > 各学科学习方法 > 数学学习方法

初一数学上册知识点归纳2022范文整理

发布时间: 浏览量:1

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面小编为大家带来九年级数学相关知识点有哪些,希望大家喜欢!

初一数学上册知识点归纳2022范文整理 1

一、目标与要求

1.了解正数与负数是从实际需要中产生的。

2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

4.了解倒数概念,会求给定有理数的倒数;

5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法

二、重点

正、负数的概念;

正确理解数轴的概念和用数轴上的点表示有理数;

有理数的加法法则;

除法法则和除法运算。

三、难点

负数的概念、正确区分两种不同意义的量;

数轴的概念和用数轴上的点表示有理数;

异号两数相加的法则;

根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。

四、知识框架

五、知识点、概念总结

1.正数:比0大的数叫正数。

2.负数:比0小的数叫负数。

3.有理数:

(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:

4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

5.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0等价于a+b=0等价于a、b互为相反数。

6.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

7.有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数>0,小数-大数<0.

8.互为倒数:乘积为1的两个数互为倒数;

注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。

9. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;10.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;

(2)加法的结合律:(a+b)+c=a+(b+c)。

11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

12.有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

13. 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;

(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac 。

14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。

15.有理数乘方的'法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n ,当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n 。

16.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

17.科学记数法:

把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

20.混合运算法则:先乘方,后乘除,最后加减。

(参考教材:初中数学七年级人教版)

练习:

1.若密云水库的水位比标准水位高出3cm记为+3cm,某月的水位记录中显示,1日水位为-5cm,2日水位为-1cm,3日水位为+4cm,则( )

A.1日与2日水位相差6cm B.1日与3日水位相差1cm C.2日与3日水位相差5cm D.均不正确

2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:

最接近标准质量的是_________号篮球;质量最大的篮球比质量最小的篮球重____________克.

3.判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1。

(3)一个数与0相加,仍得这个数。

初一数学上册知识点归纳2022范文整理 2

数学广角

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过“抽屉原理”的灵活应用感受数学的魅力。

初一数学上册知识点归纳2022范文整理 3

第一章实数

一、重要概念1.数的分类及概念数系表:

说明:“分类”的原则:1)相称(不重、不漏)2)有标准

2.非负数:正实数与零的统称。(表为:x≥0)

性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法

②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。

4.相反数:①定义及表示法

②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算

1.运算法则(加、减、乘、除、乘方、开方)

2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”

到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)

附:典型例题

1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式

★重点★代数式的有关概念及性质,代数式的运算

☆内容提要☆

一、重要概念

分类:

1.代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x,=│x│等。

4.系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根

⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

⑵算术平方根与绝对值

①联系:都是非负数,=│a│

②区别:│a│中,a为一切实数;中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数

⑴(—幂,乘方运算)

①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)

⑵零指数:=1(a≠0)

负整指数:=1/(a≠0,p是正整数)

二、运算定律、性质、法则

1.分式的加、减、乘、除、乘方、开方法则

2.分式的性质

⑴基本性质:=(m≠0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3.整式运算法则(去括号、添括号法则)

4.幂的运算性质:①?=;②÷=;③=;④=;⑤

技巧:

5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(a±b)=

7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)

10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C..

初一数学上册知识点归纳2022范文整理 4

学好数学,一要(动手),二要(动脑)。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么,动手就是多实践,多做题,要这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率”

读好一本教科书--它是教学、中考的主要依据;

记好一本笔记 --它是教师多年经验的结晶;

做好做净一本习题集--它是使知识拓宽;

记好一本心得笔记,最好每人自己准备一本错题集。

初一数学上册知识点归纳2022范文整理 5

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理三角形两边的和大于第三边

16.推论三角形两边的差小于第三边

17.三角形内角和定理三角形三个内角的和等于180°

18.推论1直角三角形的两个锐角互余

19.推论2三角形的一个外角等于和它不相邻的两个内角的和

20.推论3三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS)有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1在角的平分线上的点到这个角的两边的距离相等

28.定理2到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论3等边三角形的各角都相等,并且每一个角都等于60°

34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1三个角都相等的三角形是等边三角形

36.推论2有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1关于某条直线对称的两个图形是全等形

43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48.定理四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理n边形的内角的和等于(n-2)×180°

51.推论任意多边的外角和等于360°

初一数学上册知识点归纳2022范文整理_精选范文网

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面小编为大家带来九年级数学相关知识点有哪些,希望大家喜欢!九年级数学相关知识点1.过两点有且
推荐度:
点击下载文档文档为doc格式