首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二学年的数学知识点分析精选推荐

发布时间: 浏览量:3

在学习上你要用心,它可以干成你看似不可能的事,不用心再简单的事也会搞砸。是啊!学习要用心,我看看天上的月亮,柔和的月光照在了我的脸上,它好像在说:用心学习,像数星星一样。下面是小编给大家带来的高二数学上学期知识点,希望大家能够喜欢!

高二学年的数学知识点分析精选推荐 1

第一部分:基础知识梳理

知识点一椭圆的定义

平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。

当即时,集合P为椭圆。

当即时,集合P为线段。

当即时,集合P为空集。

知识点二椭圆的标准方程

(1),焦点在轴上时,焦点为,焦点。

(2),焦点在轴上时,焦点为,焦点。

知识点三椭圆方程的一般式

这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考:

(其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。方程可变形为。

当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。

一般式,通常也设为,应特别注意均大于0,标准方程为。

知识点四椭圆标准方程的求法

1.定义法

椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。

例1、在△ABC中,A、B、C所对三边分别为,且B(-1,0)C(1,0),求满足,且成等差数列时,顶点A的曲线方程。

变式练习1.在△ABC中,点B(-6,0)、C(0,8),且成等差数列。

(1)求证:顶点A在一个椭圆上运动。

(2)指出这个椭圆的焦点坐标以及焦距。

2.待定系数法

首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满足的等式,求得的值,再代入所设方程,即一定性,二定量,最后写方程。

例2、已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。

例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。

变式练习2.求适合下列条件的椭圆的方程;

(1)两个焦点分别是(-3,0),(3,0)且经过点(5,0).

(2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.

3.已知椭圆经过点和点,求椭圆的标准方程。

4.求中心在原点,焦点在坐标轴上,且经过两点的椭圆标准方程。

知识点五共焦点的椭圆方程的求解

一般地,与椭圆共焦点的椭圆可设其方程为。

例4、过点(-3,2)且与有相同焦点的椭圆的方程为()

A.B.C.D.

变式练习5.求经过点(2,-3)且椭圆有共同焦点的椭圆方程。

知识点六与椭圆有关的轨迹问题的求解方法

与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。迹,其基本思路是设出轨迹上一点和已知曲线上一点,建立其关系,再代入。

例5、已知圆,从这个圆上任意一点向轴作垂线段,点在上,并且,求点的轨迹。

知识点七与弦的中点有关问题的求解方法

直线与椭圆相交于两点、,称线段为椭圆的相交弦。与这个弦中点有点的轨迹问题是一类综合性很强的题目,因此解此类问题必须选择一个合理的方法,如“设而不求”法,其主要特点是巧代线段的斜率。其方程具体是:设直线与椭圆相交于两点,坐标分别为、,线段的中点为,则有

①式-②式,得,即

通常将此方程用于求弦中点的轨迹方程。

例6.已知:椭圆,求:

(1)以P(2,-1)为中点的弦所在直线的方程;

(2)斜率为2的相交弦中点的轨迹方程;

(3)过Q(8,2)的直线被椭圆截得的弦中点的轨迹方程

高二学年的数学知识点分析精选推荐 2

1、四种命题:

⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

2、注意命题的否定与否命题的区别:命题否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

3、逻辑联结词:

⑴且(and) :命题形式 p q; p q p q p q p

⑵或(or):命题形式 p q; 真 真 真 真 假

⑶非(not):命题形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

“或命题”的真假特点是“一真即真,要假全假”;

“且命题”的真假特点是“一假即假,要真全真”;

“非命题”的真假特点是“一真一假”

4、充要条件

由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

5、全称命题与特称命题:

短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

全称命题p: ; 全称命题p的否定 p:。

特称命题p: ; 特称命题p的否定 p:

高二学年的数学知识点分析精选推荐 3

1、直线的倾斜角 的范围是

在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为

4、 直线 与直线 的位置关系:

(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0

5、点 到直线 的距离公式 ;

两条平行线 与 的距离是

6、圆的标准方程: .⑵圆的一般方程:

注意能将标准方程化为一般方程

7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离  ② 相切  ③ 相交

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长

高二学年的数学知识点分析精选推荐 4

一、直线与圆:

1、直线的倾斜角的范围是

在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

4、直线与直线的位置关系:

(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0

5、点到直线的距离公式;

两条平行线与的距离是

6、圆的标准方程:.⑵圆的一般方程:

注意能将标准方程化为一般方程

7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

三、直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x轴的线段长不变,平行于y轴的线段长减半.

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

高二学年的数学知识点分析精选推荐 5

(一)

1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

1.重点:理解辗转相除法与更相减损术的原理,会求两个数的公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据按照一定的规则进行排序;理解进位制,能进行各种进位制之间的转化.

2.难点:秦九韶算法求一元多项式的值及各种进位制之间的转化.

3.重难点:理解辗转相除法与更相减损术、秦九韶算法原理、排序方法、进位制之间的转化方法.

(二)

等差数列

对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列

对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:

a2=a1_q,

a3=a2_q,

a4=a3_q,

````````

an=an-1_q,

将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

此外,当q=1时该数列的前n项和Tn=a1_n

当q≠1时该数列前n项的和Tn=a1_(1-q^(n))/(1-q).

TAG标签: 数学 知识点

高二学年的数学知识点分析精选推荐_精选范文网

在学习上你要用心,它可以干成你看似不可能的事,不用心再简单的事也会搞砸。是啊!学习要用心,我看看天上的月亮,柔和的月光照在了我的脸上,它好像在说:用心学习,像数星星一样。下面是小编给大家带来的高二数学
推荐度:
点击下载文档文档为doc格式