首页 > 学习方法 > 高中学习方法 > 高二学习方法 > 高二数学

高二数学必修二必记的知识点分析精选集锦

发布时间: 浏览量:2

只有高效的学习方法,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。以下是小编给大家整理的高二数学知识点及公式整理,希望大家能够喜欢!

高二数学必修二必记的知识点分析精选集锦 1

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值。

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。

高二数学必修二必记的知识点分析精选集锦 2

在中国古代把数学叫算术,又称算学,最后才改为数学。

1.任意角

(1)角的分类:

①按旋转方向不同分为正角、负角、零角.

②按终边位置不同分为象限角和轴线角.

(2)终边相同的角:

终边与角相同的角可写成+k360(kZ).

(3)弧度制:

①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.

②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.

③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.

④弧度与角度的换算:360弧度;180弧度.

⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.

2.任意角的三角函数

(1)任意角的三角函数定义:

设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.

(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.

3.三角函数线

设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.

高二数学必修二必记的知识点分析精选集锦 3

一、化学实验安全

1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。

(2)烫伤宜找医生处理。

(3)浓酸撒在实验台上,先用Na2CO3(或NaHCO3)中和,后用水冲擦干净。浓酸沾在皮肤上,宜先用干抹布拭去,再用水冲净。浓酸溅在眼中应先用稀NaHCO3溶液淋洗,然后请医生处理。

(4)浓碱撒在实验台上,先用稀醋酸中和,然后用水冲擦干净。浓碱沾在皮肤上,宜先用大量水冲洗,再涂上硼酸溶液。浓碱溅在眼中,用水洗净后再用硼酸溶液淋洗。

(5)钠、磷等失火宜用沙土扑盖。

(6)酒精及其他易燃有机物小面积失火,应迅速用湿抹布扑盖。

二、混合物的分离和提纯

分离和提纯的方法分离的物质应注意的事项应用举例

过滤用于固液混合的分离一贴、二低、三靠如粗盐的提纯

蒸馏提纯或分离沸点不同的液体混合物防止液体暴沸,温度计水银球的位置,如石油的蒸馏中冷凝管中水的流向如石油的蒸馏

萃取利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂用四氯化碳萃取溴水里的溴、碘

分液分离互不相溶的液体打开上端活塞或使活塞上的凹槽与漏斗上的水孔,使漏斗内外空气相通。打开活塞,使下层液体慢慢流出,及时关闭活塞,上层液体由上端倒出如用四氯化碳萃取溴水里的溴、碘后再分液

蒸发和结晶用来分离和提纯几种可溶性固体的混合物加热蒸发皿使溶液蒸发时,要用玻璃棒不断搅动溶液;当蒸发皿中出现较多的固体时,即停止加热分离NaCl和KNO3混合物

三、离子检验

离子所加试剂现象离子方程式

Cl-AgNO3、稀HNO3产生白色沉淀Cl-+Ag+=AgCl↓

O42-稀HCl、BaCl2白色沉淀SO42-+Ba2+=BaSO4↓

四、除杂

注意事项:为了使杂质除尽,加入的试剂不能是“适量”,而应是“过量”;但过量的试剂必须在后续操作中便于除去。

五、物质的量的单位――摩尔

1、物质的量(n)是表示含有一定数目粒子的集体的物理量。

2、摩尔(mol):把含有6、02×1023个粒子的任何粒子集体计量为1摩尔。

3、阿伏加德罗常数:把6、02X1023mol-1叫作阿伏加德罗常数。

4、物质的量=物质所含微粒数目/阿伏加德罗常数n=N/NA

5、摩尔质量(M)(1)定义:单位物质的量的物质所具有的质量叫摩尔质量、(2)单位:g/mol或g、、mol-1(3)数值:等于该粒子的相对原子质量或相对分子质量、

6、物质的量=物质的质量/摩尔质量(n=m/M)

六、气体摩尔体积

1、气体摩尔体积(Vm)(1)定义:单位物质的量的气体所占的体积叫做气体摩尔体积、(2)单位:L/mol

2、物质的量=气体的体积/气体摩尔体积n=V/Vm

3、标准状况下,Vm=22、4L/mol

七、物质的量在化学实验中的应用

1、物质的量浓度、

(1)定义:以单位体积溶液里所含溶质B的物质的量来表示溶液组成的物理量,叫做溶质B的物质的浓度。(2)单位:mol/L(3)物质的'量浓度=溶质的物质的量/溶液的体积CB=nB/V

2、一定物质的量浓度的配制

(1)基本原理:根据欲配制溶液的体积和溶质的物质的量浓度,用有关物质的量浓度计算的方法,求出所需溶质的质量或体积,在容器内将溶质用溶剂稀释为规定的体积,就得欲配制得溶液、

(2)主要操作

a、检验是否漏水、b、配制溶液1计算、2称量、3溶解、4转移、5洗涤、6定容、7摇匀8贮存溶液、注意事项:A选用与欲配制溶液体积相同的容量瓶、B使用前必须检查是否漏水、C不能在容量瓶内直接溶解、D溶解完的溶液等冷却至室温时再转移、E定容时,当液面离刻度线1―2cm时改用滴管,以平视法观察加水至液面最低处与刻度相切为止、

3、溶液稀释:C(浓溶液)?V(浓溶液)=C(稀溶液)V(稀溶液)

高二数学必修二必记的知识点分析精选集锦 4

1.向量的基本概念

(1)向量

既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.

向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)

(5)平行向量

方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.

若向量a、b平行,记作a∥b.

规定:0与任一向量平行.

(6)相等向量

长度相等且方向相同的向量叫做相等向量.

①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.

②向量a,b相等记作a=b.

③零向量都相等.

④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关.

2.对于向量概念需注意

(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.

(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.

(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.

3.向量的运算律

(1)交换律:α+β=β+α

(2)结合律:(α+β)+γ=α+(β+γ)

(3)数量加法的分配律:(λ+μ)α=λα+μα

(4)向量加法的分配律:γ(α+β)=γα+γβ

高二数学必修二必记的知识点分析精选集锦 5

复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。

TAG标签: 数学 学习方法

高二数学必修二必记的知识点分析精选集锦_精选范文网

只有高效的学习方法,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。以下是小编给大家整理的高二数学知识点及公式整理,
推荐度:
点击下载文档文档为doc格式