做六年级数学题的学习方法和做题方法参考大全
相关文章
想要让初中数学能够得到好成绩,就要掌握正确的学习方法,学习方法就像是开启数学大门的一把钥匙,一旦找到,数学学习起来就会非常的轻松,下边小编为大家介绍的几种学习方法。
做六年级数学题的学习方法和做题方法参考大全 1
进入小学高年级后,科目稍微增加、内容拓宽、知识深化...学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。总结比较,理清思绪
知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。
在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。
学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。
例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?
这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率*工作时间=工作总量
在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)
在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。
在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种思维方式就是划归法。
做六年级数学题的学习方法和做题方法参考大全 2
(一)数与计算
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例
比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三)几何初步知识
圆的认识。圆周率。画圆。圆的周长和面积。*扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。
(四)统计初步知识
统计表。条形统计图,折线统计图,*扇形统计图。
(五)应用题
分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动
联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七)整理和复习
做六年级数学题的学习方法和做题方法参考大全 3
高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
做六年级数学题的学习方法和做题方法参考大全 4
1、做好及时的复习。
课完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。
学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。
单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
做六年级数学题的学习方法和做题方法参考大全 5
1、数学课程标准的变化;
2、历年中考试题中展现出来的“相对稳定”的特点。
我们要对考试大纲和说明我们要加以重视,如对来年中考试题预测时,我们需要参考以往的考试说明和大纲上的内容和要求上的变化。此外,近几年中考试题自身呈现的相对稳定的特点,在某种程度上体现了课程标准突出强调的内容,体现重点内容重点考查的命题基本原则。
因此,充分了解初中数学基本结构,关注中考试题特点,有助于我们掌握来年中考试题发展趋势。如初中数学学习包含以下四大部分:
一、数与代数部分
数与代数部分一般包含:数与式、方程(组)与不等式(组)、函数等几个部分。
1、数与式
综观近年来中考“数与式”部分的试题,关于“数与式”考查还会主要为基础性题目集中在基础知识与基本技能方面。以“数与式”内容为依托,加强数学理解能力的考查也越发凸显。
2、方程(组)与不等式(组)
关注解方程(组)与不等式(组)的基本技能。综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技能编制的试题,其解法的是课程标准中要求掌握的。
近年来围绕学生的创新意识,中考试题在开放性增强的同时注重考查了学生思维的严谨性与灵活性,因此,要注重学生对数学事实的真正理解。
关注数学模型思想,考查数学应用意识和能力,因此,以当地热点话题为背景,体现“问题情境—建立模型---求解---解释与应用”这一过程。
3、函数
关注函数概念及表达方式,函数与方程、不等式之间的关系。利用函数思想及函数模型解决相关问题也会是考查重点。
近些年试题开放性、灵活性、综合性是一种命题趋势。如数形结合的思想一直是重点考查内容。
二、空间与图形部分
“空间与图形”部分考查的内容,主要包括图形的性质、分类、度量,以及对图形基本性质的证明;图形的平移、旋转、轴对称变换;运用坐标描述图形的位置和运动,其中考查的重点是“可以从复杂几何图形中分解出基本图形”的能力,以及对“图形变换时研究几何问题的工具和方法”、“数学是研究数量关系和空间形式的科学”思想的领悟程度及综合应用水平。
在以上关于“图形的性质”、“图形的变化”、“图形与坐标”中所反映出来的特色基础上,将更加关注空间概念、几何直观、推理能力、应用意识等核心问题,关注“合情推理和演绎推理”的关系,更加强调可以在新的问题情境下,合理选择已有的数学活动经验,在图形的运动和变化过程中,探索图形的性质,感悟数学思想的精髓。
三、概率与统计部分:
(一)统计
1、对统计技能的考查是基础,注重统计知识之间的联系性。
2、注重考查统计活动的完整性。
3、关注应用,对统计思想的考查蕴含在统计活动中,注重考查利用统计数据作出决策的能力。
(二)概率
(1)针对概率意义的考查更简约。
通过实验,可以获得事件发生的概率。当大量重复实验时,频率可以作为i事件发生的概率,如果学生不理解概率的意义,将概率知识与确定性数学知识混淆。
(2)对列举法和树状图法的考查是主旋律,并注重利用所得的数据作出决策。再有一种变式是将几何概型问题通过区域划分转化为等可能事件的概率问题。
(3)在综合应用中,考查学生对概率知识的掌握程度。
概率的最大特点是其应用性,不但可以和现实生活中的问题紧密相连,还可以和其他领域的知识紧密结合。
四、实践与综合应用部分
一、命题内容及趋势:
(1)、从数量角度反映变化规律的函数类题型:
(2)、以直角坐标系为载体的几何类题型:
(3)、以“几何变换”为主体的几何类题型:
(4)、以“存在型探索性问题”为主体的综合探究题:
(5)、以“动点问题”为主的综合探究题:
中学数学核心概念、思想方法是数学知识的精髓,也势必会成为考查综合应用能力的重要载体,这包括方程、不等式、函数,以及基本几何图形的性质、图形的变化、图形与坐标知识之间横纵向的联系,也包括中学数学中常用的重要数学思想。如:函数与方程思想、数形结合、分类讨论思想很化归与转换思想。而数学基本方法是数学的具体表现,具有模式化和可操作性,常用的基本方法有配方法、换元法、待定系数法、归纳法和割补法。
数学过程中要有意识地将多个知识点进行“组合”与“串接”一些有针对性的、适合自己来练习的综合题,或者精选一些比较经典的试题,有目的的将它们进行剪裁、组合与改编,特别是专题复习阶段,更要能静心、精心、精选,以题为载体,以题论法。
做六年级数学题的学习方法和做题方法参考大全_精选范文网




